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Rough corrugated surfaces or time series are modeled as one-dimensional, stationary, Gaussian random
processes with power-law power spectra over a limited range of frequencies and analyzed with the techniques
of random processes. Surfaces with power-law spectra with small- and large-scale cutoffs exhibit approximate
self-affine fractals behavior. There are two crossover scales, viz., a lower crossover scale and an upper
crossover scale for nonfractal to fractal and fractal to nonfractal transition, respectively. We find the exact
representation for the various statistical properties, viz., the mean square~MS! width, the MS slope, the MS
curvature, the mean curve length~area!, the mean zero crossing density the correlation function, and the
structure function for these class of curves or corrugated surfaces. The importance of roughness exponent,
upper and lower cutoff scales, and crossover of power-law spectra to non-power-law spectra to statistical
properties of approximately self-affine fractal is emphasized. The scaling behavior of various statistical prop-
erties in the region between the two crossover scales is discussed. We suggest several methods for extracting
fractal dimension. Finally, we apply our results to a granular flow experiment to characterize various time
scales and gross statistical measure in this problem.@S1063-651X~96!06605-6#

PACS number~s!: 05.40.1j, 02.50.Ey, 61.43.Hv

I. INTRODUCTION

Many natural and artificial surfaces and time series are
disordered and have varying degree of randomness. Com-
plexities in these systems arise either from geometric disor-
der or chemical disorder or both and in some cases it is from
the dynamics of physical system. Disorder can be either frac-
tal or nonfractal in nature. Fractal disorder is usually under-
stood in terms of a self-similar or generally as a self-affine
structure@1–11#. Statistical self-affine scaling systems can
be viewed as random processes with power-law power spec-
tra @1–5#. Here we are more specifically concerned with sur-
faces or time series with power spectra, given as

^u ẑ~K !u2&5TuKu22H21, ~1.1!

where ẑ(K) is the Fourier transform of random curve or
surface profilez(x), K is the wave number, andT is related
to the strength of the fractal. The angular brackets in Eq.
~1.1! designate an ensemble averaging.H in the spectral ex-
ponent is the Hurst~or roughness! exponent and its values
are restricted to the interval between 0 and 1. A curve or
surface with the Hurst exponent (H) can be treated as a
fractal curve or surface with~global! fractional dimensional-
ity (DH)

DH522H, ~1.2!

where the fractional dimension of the curve or the curved
side of the surface lies between 1 and 2. Curves with pure
power-law frequency spectra i.e., ‘‘ideal’’ fractal structures,
do not possess any characteristic scale. Power-law power

spectra are known to give rise to fractal curves and surfaces
with hierarchical structure possessing statistical scaling prop-
erties@3#. A wide variety of physical systems show power-
law behavior in space~fractal! or time (1/f a noise!. Some
examples are man-made surfaces@5#, fracture the surfaces
@12#, electrodes@13#, geographical terrains@1,5,14,15#, sur-
face of the moon@14#, the ocean bottom@15#, ocean waves
spectra under various sea and atmospheric conditions@16#,
atmospheric turbulence@17#, and stochastic time series@18–
25#. 1/f a spectra can also arise from a deterministic chaotic
physical system@23,26#. Similarly, in biological systems
such as DNA, the spectral density of individual base posi-
tions has low-frequency power-law noise@27#. An important
model for the random fractal power-law power spectra is the
fractional Brownian motion@1,2,8#. It is therefore of great
importance to understand various statistical properties of
such power spectra.

An ideal fractal with a power-law spectrum is not a true
representation of any physical surface or curve that possesses
scaling properties only over a finite range of scales. A physi-
cally realistic power spectrum possesses both small- and
large-scale cutoffs. Recently, Yordanov and Nicolaev have
developed an important method for retrieving the parameters
of such cutoff power-law spectra from experimentally re-
corded data@24#.

In this paper we are concerned with the understanding of
the statistical properties of the random Gaussian curves or
surfaces with and without sharp cutoff power-law power
spectra. The main results for the statistics of such approxi-
mately self-affine fractals are reported in Sec. II. This in-
cludes the cutoff power-law spectra~Sec. II A!; expressions
for the statistical properties such as the correlation functions
and fractal crossover for approximate power-law spectra
~Sec. II B!; moments of power spectra e.g., mean square
width and mean square slope~Sec. II C!; probability distri-
bution functions for height and its derivative for the approxi-
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mate power-law spectra, mean curve length, area, and curva-
ture~Sec. II D!; and zeros and persistence~Sec. II E!. In Sec.
III we compare our results with experimental observations
for the granular flow and identify various time scales of this
problems. Conclusions are reported in Sec. IV.

II. STATISTICAL PROPERTIES OF APPROXIMATELY
SELF-AFFINE FRACTALS

Several decades ago Womersley and Hopkins@28# pio-
neered the use of random processes to describe rough sur-
faces. This method is now well established@29–35#. The
common models for random surface texture or time series
are statistically characterized by the power spectra, the cor-
relation function, or the structure function of a centered,
Gaussian random process@29–35#. These three statistical
characteristics are related to each other. Moments of the
power spectral density@29–31# are important for obtaining
various statistical properties of the surface, e.g., the mean
square ~MS! width, the MS slope, the MS second~and
higher! derivatives, their probability distribution functions,
the mean area, the mean square value of the curvature, the
zero crossing density, and the density of extremum points.

In this paper we deal with disorder that arises due to
roughness about a plane surface~for a corrugated surface! or
a line ~for time series!, the largest scale of disorder is taken
to be much less than the linear size of the system. The sur-
face corrugation or disorder is expressed as a continuous and
single-valued random functionz5z(x), which represents the
~surface! elevation for all coordinate points (x). As men-
tioned above, the power spectrum is sufficient to characterize
such centered, stationary, Gaussian surfaces or curves. The
statistical properties of random corrugated surfaces or time
series with nonfractal power spectra are usually well defined
quantities, but for ‘‘ideal’’ fractals with power-law spectra
Eq. ~1.1! most of these quantities do not exist. For an as-
sumed value of the spectral exponent, the Fourier transform
and the moments of̂u ẑ(K)u2& are divergent and thus the
correlation function, variance, and MS derivatives do not
exist. However, the structure function~SF! or mean square
height increment function does exist and follows a self-affine
scaling relation given by@3#

^@z~x!2z~x8!#2&5t2~12H !X2H, ~2.1!

where the angular brackets designate ensemble averaging
andX5ux2x8u. Topothesy (t) @3,5# is defined as the hori-
zontal distance between two points on which the SF is equal
to t2. Topothesy of an ideal fractal surface is related to the
strength of the power-law spectra by the relation

t2~12H !5~T/ApH22H!G~12H !/G~1/21H !. ~2.2!

Surface profiles or time series functions that are statisti-
cally characterized by power-law spectra@see Eq.~1.1!# and

power-law SFs@Eq. ~2.1!# have a self-affine scaling property,
viz.,, for a positive realb, z(bx) andbHz(x) have identical
SFs and therefore are statistically indistinguishable. AsH
increases orDH decreases the fractal becomes smoother.
Surfaces or curves withH→1 andH→0 are called marginal
and extreme fractals@3#, respectively. For a Brownian fractal
surface,H andDH are 1/2 and 1.5, respectively. The surfaces
with H,1/2 orDH.1.5 andH.1/2 orDH,1.5 are ‘‘super-
Brownian’’ fractals and ‘‘sub-Brownian’’ fractals, respec-
tively.

It is important to emphasize that there is a profound dif-
ference between the power spectra of nonfractal and fractal
structures. For a nonfractal~surface! there is a characteristic
correlation length or time fixed by the rapidity of the fluc-
tuation whereas for an ‘‘ideal’’ fractal~surface! there is no
characteristic scale at all that can be seen from Eq.~1.1!.

A. Power-law spectra with and without sharp cutoffs

Surfaces or time series that exhibit statistical self-
resemblance over the entire range of scales can be described
by the power spectra given by Eq.~1.1!. However, any real
surface or a time series is characterized by power-law spectra
over a few decades in frequencies with a high- and a low-
frequency cutoff@23#. The random surface or curve statistics
can be approximated by power-law spectra with sharp fre-
quency cutoffs or power-law spectra with low- and high-
frequency crossover to non-power law spectra.

The power-law spectra with sharp wave-number cutoff
are given as

^u ẑ~K !u2& I5H 0, K,Kmin

TuKu22H21, Kmin<K<Kmax

0, K.Kmax,

~2.3!

whereKmin andKmax are low- and high-wave-number cut-
offs, respectively. These approximate spectra may be suit-
able to understand statistical properties in the scaling region.
The band limited power-law spectra in several cases show a
gradual flattening for low wave numbers and a sharp de-
crease in non-power-law form for the high wave numbers.
Such a power spectrum can be estimated by a function with
a sharp flattening~white noise! at low wave numbers and a
sharp cutoff at high wave numbers~i.e., power at high wave
number is very small!, which is given by

^u ẑ~K !u2& II5H TKmin
22H21 , K,Kmin

TuKu22H21, Kmin<K<Kmax

0, K.Kmax.

~2.4!

Similarly, an approximate power-law spectrum with sharp
flattening at low wave numbers~white noise! and a gradual
decrease at high wave numbers is given as

^u ẑ~K !u2& III5H TKmin
22H21 , K,Kmin

TuKu22H21, Kmin<K<Kmax

TKmax
22H21exp@2~K2Kmax!/bKmax#, K.Kmax,

~2.5!

5750 53RAMA KANT



whereb is the coefficient of correlation scale. The inset in
Figs. 5 and 8 show plots of such power spectra with a large-
wave-number nonfractal spectrum. This power spectrum has
a sharp high-wave-number fall for smallb and reduces to
Eq. ~2.4! for b→ 0. Similarly, for largeb @in Eq. ~2.5!# the
power spectrum has a long high-frequency tail. These types
of spectra can be used to estimate several experimental
power spectra Refs.@51,50#.

We define a surface or time series with sharp cutoff
power-law spectra as a ‘‘cutoff’’ fractal. Apart from the frac-
tal dimension, a fractal-like surface is characterized by three
characteristic~length or time! scales: the large (Lmax) and
small (Lmin) lateral cutoffs and a scale (l ) that originates
from the coefficientT of power spectra (l 2(12H)5T) in Eqs.
~2.3!–~2.5!. The minimum wave number (Kmin) and maxi-
mum wave number (Kmax) are related to cutoff scales as
1/Lmax and 1/Lmin , respectively. The range of~spatial! scales
of the system is defined as

r5Lmax/Lmin . ~2.6!

It is an important characteristic in determining the relative
importance of lower and upper cutoff scales. The fractal with
finite Lmax andLmin→0 is called a ‘‘finite’’ fractal and one
with Lmax→` andLmin→0 is called an ‘‘ideal’’ fractal. The
presence of lower and upper cutoff scales in the power spec-
tra removes the divergences and make it a differentiable sur-
face or a time series of finite variance. In the following sec-
tion we analyze the correlation and structure function for an
approximate power-law spectrum and their approximate self-
affine scaling behavior, crossover scales, and the effect of the
nonfractal high-frequency tail region.

B. Correlation functions, fractal crossover, and scaling
exponent

In this section we obtain the exact expressions for the
correlation function, difference correlation function, and ef-
fective scaling exponent for the various power spectra of
Sec. II A. Their behavior in various regimes and the effect of
crossover to low wave-number white noise spectra and high
wave-number non-power-law behavior is analyzed.

The two-point correlation function for a statistically ho-
mogeneous surface is related to the power spectra by an in-
verse Fourier transform as

^z~x!z~x8!&5
1

2pE2`

`

dKejKX^u ẑ~K !u2&, ~2.7!

wherej5A21 andX5ux2x8u. Substituting Eq.~2.3! in Eq.
~2.7! we obtain the correlation function for the cutoff power-
law spectrum, i.e., the real part~Re! of the expression

^z~x!z~x8!& I5ReH Tp ~2 jX !2HGS 22H,2
jX

Lmax
,2

jX

Lmin
D J ,

~2.8!

whereG(a,x0 ,x1) is the ‘‘generalized’’ incomplete gamma
function, which is equal to G(a,x0)2G(a,x1)
5g(a,x1)2g(a,x0) @36#. The real part of Eq.~2.8! can be
summed in terms of a~1,2! generalized hypergeometric func-
tion as

^z~x!z~x8!& I5^z~x!z~x8!&max2^z~x!z~x8!&min

5hmax
2

1F2~2H;12H,1/2,2~X/2Lmax!
2!

2hmin
2

1F2„2H;12H,1/2,2~X/2Lmin!
2
…,

~2.9!

wherehmin
2 5(T/2pH)Lmin

2H andhmax
2 5(T/2pH)Lmax

2H .
The structure function or increment correlation function

and the correlation function for a corrugated surface or a
curve are related as

D5^@z~x!2z~x8!#2&52h222^z~x!z~x8!&. ~2.10!

Substituting Eq.~2.8! in Eq. ~2.10!, we obtain

D I52h222ReH Tp ~2 jX !2HGS 22H,2
jX

Lmax
,2

jX

Lmin
D J .
~2.11!

The real part of Eq.~2.11! can be summed in terms of a~1,2!
generalized hypergeometric function as

D I52hmax
2 @121F2„2H;12H,1/2,2~X/2Lmax!

2
…#

22hmin
2 @121F2„2H;12H,1/2,2~X/2Lmin!

2
…#.

~2.12!

To determine the effect of two cutoff scales on the correla-
tion functions we consider the various expansions for the
correlation function at small, large, and intermediate separa-
tion scales.

Behavior of the correlation function forsmall separation
scalesis obtained by expanding the incompleteG functions
@36# @Eq. ~A1!# in Eq. ~2.8! for small X. In this limit, the
correlation function is

^z~x!z~x8!& I5
TLmax

2H ~12r22H!

2pH

2
1

p (
k51

`
~21!k11TLmin

2H

2~k2H !~2k!!

3S X

Lmin
D 2k@12r22~k2H !#, ~2.13!

wherer is the ratio of cutoff length scales and is given by
Eq. ~2.6!. In case of surfaces withr>max@51/H, 51/(12H)]
the contribution ofr in each individual term is less than 4%
and Eq.~2.13! simplifies to

^z~x!z~x8!& I5
TLmax

2H

2pH
2
1

p(
k51

`
~21!k11TLmin

2H

2~k2H !~2k!! S X

Lmin
D 2k.
~2.14!

ForX→0, in Eqs.~2.13! and~2.14!, we obtain the MS width
of the surface.

Similarly, we obtain the leading behavior of the SF for
small separation scales to be

D I5
TLmin

2H

2p~12H ! S X

Lmin
D 21•••. ~2.15!
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~See the small-X behavior of a representative plot ofD I in
Fig. 8.!

Similarly, in thelarge separation scales, i.e.,X@Lmin and
X.Lmax, the asymptotic expansion of the incompleteG
function @36# @see Eq.~A2!# in Eq. ~2.8! gives

^z~x!z~x8!& I5hmax
2 (

k51

`

~21!k11~2H !k

3
cos~X/Lmax1kp/2!

~X/Lmax!
k , ~2.16!

where (2H)k5G(2H1k)/G(2H) is the Pochammer’s sym-
bol for this ratio andG(2H) is the gamma function. Equation
~2.16! shows that the correlation function goes to zero in an
oscillatory manner for largeX.

Substituting Eq.~2.16! in Eq. ~2.10!, one can see that for
large distances (X@Lmax) the effect of theLmax term is
dominant and the SF shows its second asymptotic regime
where it approaches 2h2 in an oscillatory manner as

D I52h224Hhmax
2 cos~X/Lmin1p/2!

~X/Lmin!
1•••. ~2.17!

~See the large-X behavior of a representative plot forD I in
Fig. 8.!

For intermediate separation scales, i.e., the approximate
fractal regimeLmax.X.Lmin , an asymptotic expression for
Eq. ~2.8! is obtained by using the asymptotic expressions for
the incompleteG function @36# @see expansions given by
Eqs.~A1! and ~A2!# as

^z~x!z~x8!& I52
t2~12H !

2
X2H1hmin

2 (
k51

`

~21!k~2H !k

3
cos~X/Lmin1kp/2!

~X/Lmin!
k 1hmax

2

2hmax
2 (

k51

`
~21!kH

~k2H !~2k!! S X

Lmax
D 2k, ~2.18!

wheret2(12H) is defined by Eq.~2.2!.
Equation~2.11! for the structure function apparently does

not exhibit self-affinity. Theapproximate self-affinitycan be
seen in the asymptotic expansion for a large range of length
scales, i.e.,Lmax@X@Lmin . The asymptotic expansion of Eq.
~2.11! yields

D I't2~12H !X2H22hmin
2 F122H

cos~X/Lmin1p/2!

~X/Lmin!
G

2hmax
2 ~H/12H !~X/Lmax!

2
•••. ~2.19!

The structure function for an ideal fractal is given by Eq.
~2.1!, which is the leading term in Eq.~2.19!. Equation
~2.19! suggests an approximate self-affine behavior for a sur-
face or a time series with a cutoff power-law spectra. The
oscillations produced by the second term are noticeable only
for surfaces with relatively largehmin

2 and decreases with an
increase inX. In Eq. ~2.19!, t is the topothesy and for an
ideal fractal, which is given by Eq.~2.2!. The topothesy for

an ideal fractal depends only on the Hurst exponent; how-
ever, for a cutoff fractal it depends on the Hurst exponent as
well as on two cutoff length scales.

Similarly, the SF for the second power spectrum@Eq.
~2.4!# is obtained as

D II5D I1DL , ~2.20!

whereDL is given as

DL5
2TLmax

2H

p F12
sin~X/Lmax!

X/Lmax
G ~2.21!

andD I is given by Eq.~2.4!. This SF include the contribution
of low-wave-number white noise.

The SF for the third power spectrum@Eq. ~2.5!# is

D III5D I1DL1DU , ~2.22!

whereDU is given by

DU5
2bTLmin

2H

p F12
cos~X/Lmin!2bXsin~X/Lmin!/Lmin

11~bX/Lmin!
2 G .

~2.23!
D IV is the SF for a power spectrum with a sharp lower cutoff
and exponential higher-wave-number behavior.D IV is de-
fined as

D IV5D I1DU . ~2.24!

@D I , D II , D III , andD IV are plotted in Fig. 8 and are repre-
sented by curves~I!, ~II !, ~III !, and~IV !, respectively.#

In Fig. 1 we have plotted the SF (D III ; see Eq.~2.22!# for
the various values of the Hurst exponent. In this figure we
have taken the normalization constantT5 1, the coefficient
of the correlation scaleb5 0.05, and the wave-number cut-

FIG. 1. Plot of the structure functionD III (X,H) of Eq. ~2.22!
versus the spatial incrementX5ux2x8u for different values of the
Hurst exponentH. The parameter values are the normalization con-
stant T51 from Eq. ~2.5!, the coefficient of correlation scale
b50.05 @see Eq.~2.5!#, and wave-number cutoffsKmin5p and
Kmax5215p defined in Eqs.~2.3!–~2.5!. We see that the SF in-
creases for the smaller values ofH.
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offs Kmin5p andKmax5 215p. We see that for a given value
X, the value of the SF is higher for small roughness expo-
nent. As we discussed earlier, qualitatively the SF can be
classified in three categories: small-scale domain, approxi-
mately scaling intermediate-scale domain, and saturation be-
havior of a large-scale domain. These domains can be more
clearly seen in the logarithmic derivative of the SF, which is
discussed below.

In the following discussion we show thescaling exponent
H(X,r) for the SF is not a global measure for all scales,
viz., the scaling exponent is a function ofX and cutoff
scales. The functionH(X,r) is obtained by taking the loga-
rithmic derivative of the SF as

H~X,r!5
X

2D

dD

dX
. ~2.25!

The formula for the scaling exponent for the sharp cutoff
power-law spectrum@Eq. ~2.3!# is

H I~X,r!5
X

2D I

dD I

dX
. ~2.26!

Similarly, the scaling for the second power spectrum@Eq.
~2.4!# is obtained as

H II~X,r!5
X

2D II
FdD I

dX
1
dDL

dX G . ~2.27!

This is the exact form for an approximate result obtained by
Talocia @25#.

The scaling exponent for the third power spectrum@Eq.
~2.5!# is defined as

H III5
X

2D III
FdD I

dX
1
dDL

dX
1
dDU

dX G . ~2.28!

Various derivatives or components in Eqs.~2.26!–~2.28! are
defined below. The derivative ofD I is expressed as

dD I

dX
52

4H

X
^z~x!z~x8!& I1

2TLmax
2H

pX
cos~X/Lmax!

2
2TLmin

2H

pX
cos~X/Lmin!, ~2.29!

where the correlation function̂z(x)z(x8)& I is given by Eq.
~2.8!. The derivative ofDL is obtained as

dDL

dX
52

2TLmax
2H

pX
cosS X

Lmax
D1

2TLmax
112H

pX2 sinS X

Lmax
D .
~2.30!

Similarly, the derivative forDU is

dDU

dX
5

2bLmin
2HT

pS 11
b2X2

Lmin
2 D

S bXcosS X

Lmin
D

Lmin
2 1

~11b!sinS X

Lmin
D

Lmin
D

1
4 b3TXLmin

2212H

pS 11
b2X2

Lmin
2 D 2

S cosS X

Lmin
D2

bXsinS X

Lmin
D

Lmin
D .

~2.31!

In Fig. 2 we have shown the scale dependence of the
scaling exponentH III (X,r) @see Eq.~2.28!# for the same set
of parameters as in Fig. 1. The scaling exponent that is ob-
tained by a logarithmic derivative of the SF is very sensitive
to small oscillations in the SF. In Fig. 1, for the SF, there is
no perceptible oscillation for small-X behavior, but these os-
cillations are seen very clearly in theH III (X,r) plot. At very
small scale~i.e., X,Lmin), H III (X,r) goes to unity and as
X increases~i.e., X.Lmin) it approaches an approximately
constant value close to the spectral exponentH in an oscil-
latory manner. Similarly, forX.Lmax, H III (X,r) goes to
zero in an oscillatory manner. ForH50.5 or close to it,
fairly accurate self-affinity is observed between the two
crossover scales. This is not observed forH close to 1 and 0
~for a finite range of scale!. There is a systematic deviation in
the value of the scaling exponent, viz., the scaling exponent
is underestimated and overestimated for the spectral expo-
nent H close to 1 and 0, respectively. The dotted vertical
lines indicate the position of lower and upper scale cutoffs.
The asterisks in Fig. 2 mark the positions of the inner and
outer crossover scales, which are defined below.

FIG. 2. Plot of the scaling exponentH III of Eq. ~2.28! or the
local slope ofD III versus the spatial incrementX5ux2x8u for three
values of the Hurst exponentH. The parameter values areT51,
Kmin5p, Kmax5215p, andb50.05 @see Eq.~2.5!#. Dotted vertical
lines represent the positions of two cutoff scales and asterisk marks
are the positions of the inner and outer crossover scales~see Eqs.
2.32 and 2.33!. We see that the there is a systematic deviation in the
value of theH III from the spectral exponent~represented by the
horizontal dotted lines!.
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The crossover scaleswithin which the surface shows ap-
proximate self-affinity can be roughly estimated by the lim-
iting behavior. Theinner crossover scale(Li) is obtained by
equating the leading term in Eqs.~2.15! and ~2.19!. Li is
given by

Li'x iLmin ,

x i52@ApG~22H !/2HG~ 1
21H !#1/~222H !. ~2.32!

The inner crossover scale is a monotonically decreasing
function of H. It is always greater than the lower cutoff
length scale. The inner crossover scale is large for a small
roughness exponent and decreases with an increase in the
Hurst exponent, e.g.,Li→` for H→0, Li5pLmin for H5
1
2, and Li→e3/2e2gLmin'2.52Lmin for H→1, whereg is a
Euler constant.

The outer crossover scale(L0) is obtained by equating
the leading term in Eqs.~2.17! and ~2.19!. Lo is given by

Lo'xoLmax,

xo52@G~1/21H !/ApG~12H !#1/2H. ~2.33!

The outer crossover scale (Lo) is not a monotonic function
of the Hurst exponent. It has a maximum atH'0.38 and is
approximately equal to 0.65Lmax. The outer crossover scale
for H→0 is given byLo→e2gLmax'0.56Lmax; for H51/2
by Lo5 2/p Lmax'0.64Lmax; and forH→1 by Lo→0.

The ratio of the outer and inner crossover scales is the
range (r f) of fractality. r f is proportional tor,

r f5xr.

The proportionality constantx5xo /x i in the preceding
equation is given as

x5S G~H1 1
2 !

ApG~12H !
D 1/2HS 2HG~ 1

21H !

ApG~22H !
D 1/2~12H !

. ~2.34!

Figure 3 shows the plot of logarithm of 1/x, which is a
measure of difference in decades of the range of cutoff scales
and the range of fractality, versus the Hurst exponentH.
This figure suggests that the spectral exponentH around
0.6 yields a broader scaling region than around 0 and 1. This
figure also suggests that the range of fractality is always less
than the range of cutoff length scales and the range of frac-
tality has a maximum forH'0.59 with r f'0.21r. The
range of fractality falls on either side of the maximum and is
zero for both marginal and extreme fractals. Therefore, a
surface or time series with a small or large Hurst exponent
should have a larger to show fractality over a finite range.

The above discussion also suggests that it is easier to form
a scaling surface with an intermediate value ofH. So one
expects a frequent occurrence of a fractal surface with an
intermediate value of the roughness exponent and a rare oc-
currence of a marginal or an extreme fractal surface. A simi-
lar conclusion can be drawn from Sayles and Thomas’s@5#
work, where they plot the histogram for the distribution of
the roughness exponent of a variety of natural and artificial
surfaces.

Figures 4~a! and 4~b! explore the scaling exponent depen-
dence on the range of cutoff scales (r). The value of various
parameters are the same as in Fig. 1. The scaling exponent
approaches a stable fixed value near the geometric mean po-
sition of two crossover lengths viz.,Xm5ALiLo. These fig-
ures show the systematic deviation in scaling exponent,
H(Xm ,r) i.e., for H.0.6 we haveH(Xm ,r),H and for
H,0.6 it follows theH(Xm ,r).H. For systems with a
broad range of scales we have an approximate identity
H III'H, which is valid only for the intermediate values of
H, i.e., for r.103; it is applicable for 0.4<H<0.6. For
these values ofH one can ignore finite scale corrections i.e.,
Eq. ~2.1! can be used to estimate the roughness exponent in
the scaling region. These figures also show a very slow con-
vergence ofH(X,r) towards the expected values of
H(Xm ,r)50 and 1 forH50 and 1, respectively. This is
also observed in the numerical calculation of Osborne and
Provenzale@19# and Higuchi@20#.

For an ideal fractal or a random curve with pure power-
law spectra@Eq. ~1.1!#, the fractal dimension linearly de-
pends on the spectral exponent or spectral Hurst exponent,
but the same is not true for a finite bandwidth power-law
spectra. Figure 2 shows the scale dependence ofH(X,r).
Similarly, Fig. 4 shows the non-linear dependence of the
fractal dimension on the roughness exponent (H) for a band-
limited power law. Random processes with a band-limited
power-law spectrum for a given spectral exponent (H) has a
scale-dependent effective scaling exponent (Heff(X,r)) that
is related to the effective fractional dimensionality
(Deff(X)) between two crossover scales as

Deff~X,r!522Heff~X,r!. ~2.35!

From Figs. 4~a! and 4~b! one can see that the effective scal-
ing exponent forr<1010 approximately follows the inequal-
ity

0.04&H III&0.96, ~2.36!

FIG. 3. Plot of log101/x versus the Hurst exponentH. This
shows the dependence of the difference in the decades of the range
of cutoff scales and the range of fractality on the Hurst exponent
@see Eq.~2.34!#. The difference diverges asH→0 or H→1 and is
minimum aroundH50.6.
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though the spectralH varies between 0 and 1. The effective
fractional dimension (Deff) of the approximately fractal
curve of finite range varies between 1.04 and 1.96. Similar
conclusions are obtained for the fractal dimension of signals
with 1/f a by Higuchi @20#, Talocia @25#, Labateet al. @38#,
and Fox@39# using different algorithms. We have tried to
explain this using the exact result for the scaling exponent
Eq. ~2.28! ~see Fig. 4!.

An important measure to quantify the complexity of a
chaotic dynamic system is the Grassberger-Procaccia@40#
correlation dimension, i.e., 1/H. This dimension of the
strange attractor counts the effective number of degree of
freedom in the dynamical system. Osborne and Provenzale
@19# observed that the numerical estimate of the Grassberger-
Procaccia correlation dimension@40# has afinite value even
for a arbitrarily long time series. This finiteness of the cor-
relation dimension is supported by our exact calculation in
Fig. 4, where effective correlation dimension is 1/Heff .

Figure 5 shows the effect of the large-frequency crossover

nonfractal region of the power spectrum on the statistical
scaling properties of the SF. The inset in Fig. 5 is a plot for
the power spectra of Eq.~2.5! for several values of the cor-
relation coefficient (b). The values of the parameters used in
this figure areT51, H50.5, Kmin5p, andKmax5215p and
the values of the correlation coefficient are 0.01, 0.1, 0.5, 1,
5, 10, and 100. In the inset the longest tail spectrum corre-
sponds tob5100, the shortest tail spectrum corresponds to
b50.01, and other values of the spectra fall in between. The
presence of a long tail in the power spectrum, i.e.,
b5 100,10, or 5, destroys the scaling region of the SF. This
means that the band-limited power-law spectrum is not a
sufficient condition to make a scaling surface or time series,
i.e., one needs to have a short tail high-wave-number non-
power-law spectra.

A recent work of Yordanov and Nickolaev@24# is closely
related to some of the work reported in this section. Yor-
danov and Nickolaev@24# have developed a method for de-
termining the spectral parameters of experimentally recorded
self-affine time series and they obtained an expression for the
SF and the crossover time for the time series with a sharp
cutoff power-law spectra. Our results, are consistent with
their results, though their SF differs from ours@Eq. ~2.12!#
by a factor of 1/p. This is because their@24# analysis is in
half-space and uses a different definition for the Fourier
transform. In the following sections we report and analyze
exact mathematical formulas for the various other important
statistical properties of band-limited power-law spectra that
are or can be used to understand approximately self-affine
fractals.

C. Moments of power spectra and significance of cutoff scales

The presence of a low frequency cutoff to 1/f a random
processes makes it a finite power random processes. Simi-
larly, the presence of an upper frequency cutoff in the power-

FIG. 4. Plot of the scaling exponentH III (X) and its dependence
on the range of cutoff scalesr @defined by Eq.~2.6!#. The parameter
values areT51, b50.05, Kmin51/p, and Kmax5rKmin . ~a!
H51,0.9, 0.8,0.7,0.6, and 0.5;~b! H50,0.1,0.2, 0.3, and 0.4. For
the ~spectral! Hurst exponent (H) close to 0 and 1,H III has ex-
tremely slow convergence. It has systematic deviation with opposite
trends aroundH50.6.

FIG. 5. Plot of the structure functionD III (X,H) of Eq. ~2.22!
versus the spatial incrementX5ux2x8u for different values of the
coefficient of correlation scales. The parameter values areT51,
H50.5, Kmin5p, andKmax5215p andb is taken as 0.01, 0.1, 0.5,
1, 5, 10, and 100. The inset show the power spectra for various
values of the correlation coefficient@see Eq.~2.5!#. We see that the
size of scaling region reduces with an increase in the nonfractal tail
region of the spectra.
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law power spectrum makes it a differentiable random pro-
cess, which opens up the possibility of using derivatives of
random processes to extract the fractal exponent. These~MS!
derivatives are also important in defining the mean length of
the curve, the MS curvature, the mean zero density, the mean
density of extremum points, etc. A related work in Ref.@20#
obtained the exponent in terms of the spectral exponent for
themth-order forward difference operation to a time series.
In this section we obtain the exact results for the MS fluc-
tuations and arbitrary MS derivatives and analyze their de-
pendence on the scaling exponent and cutoff scales.

The variance and various mean square derivatives of a
homogeneous random corrugated surface are related to the
even moments (m2r) of the power spectra. It is important to
note that the odd moments of the power spectra are zero.

The zeroth moment (r50) of the power spectrum has an
important physical significance as it is the measure of the
surface width, i.e., variance (h2). This is one of the most
utilized methods to extract the fractal dimension. The mean
square width of the cutoff fractal can be represented in the
form

m0
I 5h25

l 2~12r22H!

2pH S Lmaxl D 2H, ~2.37!

where l andT are related throughT5 l 2(12H). For a suffi-
ciently wide range of frequencies, the leading contribution to
the surface width comes from the upper cutoff length scale.
The surface width decreases with a decrease in the range of
spatial length scales. ForH→0 ~the extreme fractal!, Eq.
~2.37! corresponds to a surface with logarithmic roughness
and the mean square surface width is equal tol 2lnr/p. For a
time series, the MS width is usually defined in such a way
that it is equal to one-half of the MS width defined by us.

At this point we find the range (r0) for the surface width
above which one can ignore the effect of smaller length
scales. This is estimated by takingr0

22H51/25, from which

r0551/H. ~2.38!

r0 increases exponentially as the roughness exponent de-
creases. This ranger0 is infinite for the extreme fractal and 5
for the marginal fractal. This implies that inclusion of a
lower cutoff in the power-law spectra is more important for
surfaces or time series with a small roughness exponent.

For curves or surfaces withr>r0 , the dimensionless
width hmax

2 /l2 is a nonmonotonic function of the roughness
exponent and has a critical roughness exponent (H0). The
dimensionless MS width is minimum atH0 and this critical
roughness exponent is obtained in terms ofLmax and l as

H05
1

2 ln~Lmax/ l !
. ~2.39!

The magnitude ofH0 is solely decided by the upper cutoff
scale and the strength of the fractal. The nonmonotonic be-
havior disappear for the fractals with range less than
Al /Lmin and they are a monotonically decreasing function of
H.

In Fig. 6 we plotm0
I @see Eq.~2.37!# with respect toH to

show the range-dependent monotonic to nonmonotonic tran-
sition in the MS width. The parameters used in these plots

are :T51, Lmin51/215p, andLmax5rLmin . Asterisks in the
figure represent the positions ofH0 defined by Eq.~2.39!.
The monotonic to nonmonotonic transition occurs at
r'105.23. The MS width less than this range is a monotoni-
cally decreasing function ofH. The minimum of the MS
width become sharper and shifts towards the lower value of
H with an increase inr. It will be interesting to verify this
monotonic to nonmonotonic transition by numerically simu-
lated data.

The second moment of power spectra~MS slope! is an-
other important surface characteristic. It is needed for obtain-
ing expressions for mean curve length, MS curvature, mean
zero crossing density, and mean extremum density, and for
cutoff fractals it is found to be

m2
I 5 K S ]z~x!

]x D 2L 5
12r22~12H !

2p~12H ! S l

Lmin
D 2~12H !

. ~2.40!

For marginal fractals the MS slope increases logarithmically
with the range of roughness and is equal to lnr/p. The rms
slope increases in the power-law form with a decrease in the
lower cutoff scale and also decreases with the decrease in
r. The ranger1 ~above which the effect of upper cutoff scale
is not significant! for m2 is given by

r1551/~12H !. ~2.41!

The ranger1 for a Brownian fractal is 25. Similarly, the
r1’s are 5 and̀ for extreme and marginal fractal, respec-
tively. Hence the inclusion ofLmax in the power-law spectra
is more important for surfaces with a higher Hurst exponent.

For surfaces withr>r1 , the MS slopem2
I is a non-

monotonic function ofH and has a critical roughness expo-
nent (H1). The MS slope has a minimum atH1 and is given
by the relation

FIG. 6. Plot of the MS widthm0
I @Eq. ~2.37!# versus Hurst

exponentH for various values of range of cutoff scales (r510d).
The parameter values are the normalization constantT51 and the
scale cutoffsLmax510dLmin andLmin51/215p, whered is taken as
6, 5.8, 5.6, 5.4, 5.2, and 5. Asterisks in the figure represent the
positions ofH0 @see Eq.~2.39!#. We show that the minimum of the
MS width becomes sharper and shifts toward the lower value of
H with the increase inr.
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H1512
1

2 ln~ l /Lmin!
. ~2.42!

The magnitude ofH1 is solely decided by the lower cutoff
scale and the strength of the fractal. The MS derivative
(m2) shows a scaling property between two crossover length
scales and is given by

m25@1/2p~12H !#~ l /L !2~12H !, ~2.43!

whereL is an arbitrary length scale and is restricted between
Li andLo , andLmax/L>r1.

In general, the 2r th moment of the power spectra for a
statistically homogeneous cutoff fractal is well defined and is
given by

m2r
I 5@T/2p~r2H !#@Lmin

22~r2H !2Lmax
22~r2H !#. ~2.44!

Equation~2.44! shows that the importance of the upper cut-
off scale decreases with an increase in the order of the mo-
ment. The contribution of the upper cutoff length scale is
insignificant for higher surface moments. In the ideal or fi-
nite fractal limit the second and higher (r.1) moments di-
verge so the surface is nondifferentiable.

The presence of lower and upper non-power-law behavior
in the spectrum modifies the 2r th moment by extra additive
terms. The 2r th moment of the second power spectrum@see
Eq. ~2.4!# is

m2r
II 5m2r

I 1m2rL . ~2.45!

Similarly, the 2r th moment for the third power spectrum@see
Eq. ~2.5!# is

m2r
III5m2r

I 1m2rL1m2r U , ~2.46!

wherem2rL andm2rU are given by

m2rL5TLmax
2~H2r !/~112r !p ~2.47!

and

m2rU5~T/p!b112re1/bLmin
2~H2r !G@112r ,1/b#. ~2.48!

The mean squarer th derivative has a scaling property for
an arbitrary length scaleL and is given by

m2r5@T/2p~r2H !#1/L2~r2H !, ~2.49!

whereLi,L,Lo andLmax/L>rr (551/(r2H)). The r th MS
derivative ofz(x) leads to a shift in exponent by 2r .

D. Probability densities, curve length, and curvature

Physical surfaces or time series described by stationary
random processes and in the absence of long-range correla-
tions ~and with finite variance! are expected to show Gauss-
ian behavior. Gaussian behavior arises from the central limit
theorem@30,37#.

For an ideal self-affine surface fractal the variance, slope,
and higher derivatives do not exist, so the application of the
central limit theorem for these properties is ruled out. For an
approximately self-affine fractal, however, these quantities
are finite and the central limit theorem is applicable. The

probability density and joint probability for the surface el-
evation, slope, and other higher derivatives are distributed
according to the normal law. This can be shown by repre-
senting the surface elevation by a sum of a large number of
sinusoids with random phases whose coefficients are decided
by the power spectral density@19,29–31#. The Gaussian dis-
tribution of surface elevation has been measured for various
surface corrugations@33#.

The probability density for the elevation can be obtained
by substituting an appropriate expression form0 @e.g., Eqs.
~2.37!, ~2.45!, ~2.46!# in a Gaussian distribution. The width
of the Gaussian function increases with an increase inLmax
and r. Between the two crossover length scales and for
L/Lmin>r0, the probability density shows scaling behavior
and is given by

p~z,L !5~H/TL2H!1/2exp~22pHz2/TL2H!. ~2.50!

Equation~2.50! has the scaling property

p~z*5bHz,L*5bL!5b2Hp~z,L !. ~2.51!

Another important quantity is the probability density
function of the slopep(j1), which is represented as

p~j1!5e2j1
2/2m2/A2pm2. ~2.52!

The probability density for the slope is obtained by substi-
tuting the appropriate expression form2 @e.g., Eqs.~2.40!,
~2.45!, and~2.46!# in Eq. ~2.52!. The probability density for
the cutoff fractal has a scaling property between two cross-
over scales forLmax/L>r1 and is given by

p~j1*5b2~12H !j1 ,L*5bL!5b~12H !p~j1 ,L !.
~2.53!

The contour lengthof the fractal curves@41# are used to
obtain the fractal dimension by Higuchi@18,20# and Osborne
and Provenzale@19#. In the following discussion we obtain
exact results for the contour length and study their scaling
and nonscaling regimes. The contour length of the curved
side of a corrugated surface or a time series is given by

G5E
G0

F11S ]z~x!

]x D 2G1/2dx, ~2.54!

whereG0 is the average line about which the curved side of
the surface is fluctuating. The probability density function
for the slope@Eq. ~2.52!# is used to obtain the exact expres-
sion for the mean contour length, which is given by

^G&5AA0/2m2U~1/2,2,1/2m2!, ~2.55!

where U(a,b,z) is a confluent hypergeometric function
@36#, AA0 is the length of the lineG0 , andA0 is the ~mac-
roscopic! area of the surface. The mean area and mean con-
tour length are related through:

^A&5AA0^G&. ~2.56!

The roughness factor (R* ) is the dimensionless mean
contour length or mean area of the rough surface and is de-
fined as
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R*5^A&/A0[^G&/AA05~1/A2m2!U~1/2,2,1/2m2!.

~2.57!

The R* increases with the second moment of the power
spectra (m2) of the surface.

To see the effect ofm2 on the roughness factor we expand
Eq. ~2.57! for small and largem2 . A small-m2 asymptotic
expansion implies that the roughness factor tends to 1 with
decreasingm2 . Similarly, the large-m2 expansion is obtained
using the small argument@42# expansion forU @see Eq.
~A4!# in Eq. ~2.57!. The leading term inR* goes asAm2 and
higher order terms have both power-law and logarithmic de-
pendences onm2 . R* for m2@1 ~i.e., large roughness sur-
faces! is obtained as

R*'A2m2 /p. ~2.58!

To find the accuracy of this result we compare~numerically!
it with an exact result for the roughness factor given by Eq.
~2.57!. Equation~2.58! underestimates the roughness factor:
the deviation involved in this approximation for surfaces
with m2>28 is less than 5% and for surfaces where
m2>11 it is less than 10%. The exact expressions for rough-
ness factor of various power-law spectra can be obtained by
substituting various expressions ofm2 in Sec. II C.R* for a
large roughness cutoff fractal is estimated as

R*'
1

p
A12r22~12H !

12H S l

Lmin
D 12H

. ~2.59!

Large roughness surfaces have a roughness factor that in-
creases withr andl , and decreases with increasingLmin . For
r>r1 @see Eq.~2.41!# the effect ofLmax is insignificant on
R* .

R* for a marginal fractal has a logarithmic dependence in
the rangeR*5A2lnr/p. Similarly, for a cutoff Brownian
fractal,R* is inversely proportional toALmin and increases
with an increase inr. R* , for surfaces withr>r1 , is a
nonmonotonic function of the roughness exponent and has a
minimum at the critical valueH5H1 @see Eq.~2.42!#.

The roughness factor for a largem2 has a scaling region,
i.e., length varies with the measuring ruler size (L), between
two crossover length scales. The scaling behavior of the
roughness factor can be shown to be

R*'~AT/pA12H ! 1/L12H, ~2.60!

whereLmax/L>r1 @r1 is defined in Eq.~2.41!#.
Another important geometrical quantity for characterizing

the arbitrary geometry of an object is thecurvature. In con-
trast to the curvature of a pure power-law spectrum, a band-
limited power spectrum is a well behaved quantity. In the
following discussion we obtain exact results for the mean
square curvature and obtain their two limiting scaling behav-
iors. This method is not exploited for estimating the fractal
dimension.

The ensemble average of the curvature is zero, but the MS
curvature is nonzero. The mean square curvature is obtained
by taking two averages over the Gaussian joint probability
density. The MS curvature is obtained as

^k2&5~m4 /A2m2!U~ 1
2 ,2

3
2 ,1/2m2!. ~2.61!

The MS curvature increases as the fourth moment of the
power spectrum (m4), but decreases with an increase in ms
slope. The slope-dependent factor, i.e., (1/A2m2) U@ 12,2

3
2,

(1/2m2)], varies between 1 and 0. The small-m2 asymptotic
expansion for the MS curvature@see Eq.~A3!# is given by

^k2&;m4@123m2#. ~2.62!

For very smallm2 the MS curvature is asymptotically equal
to the fourth moment of the power spectrum (m4). A nu-
merical comparison of Eq.~2.62! with an exact expression in
Eq. ~2.61! finds that it underestimates Eq.~2.61! for all
m2 . The deviation involved in this approximation for MS
curvature is less than 5.2% form2<0.06 and less than
10.7% form2<0.09 .

The leading dependence of the MS curvature for large
roughness surfaces~i.e., largem2) is given by

^k2&'~3Ap/8!m4 /A2m2. ~2.63!

This expression is compared~numerically! with Eq. ~2.61!
and it is observed that Eq.~2.63! always overestimates the
MS curvature. The deviation in estimating Eq.~2.61! by Eq.
~2.63! is less than 5% form2.3 and less than 10% for
m2>1.5.

The exact expression for the MS curvature can be ob-
tained by substituting the appropriate expressions form2 and
m4 ~see Sec. II C! in Eq. ~2.61!. The MS curvature for a
cutoff fractal with verysmall m2 is given by

^k2&'
12r22~22H !

2p~22H !

1

l 2 S l

Lmin
D 2~22H !

. ~2.64!

The MS curvature increases with a decrease inLmin and in-
crease inr. The scaling behavior of MS curvature between
two crossover scales is given by

^k2&5@T/2p~22H !#1/L2~22H !, ~2.65!

whereLmax/L>r1 @see Eq.~2.41!#. Equation~2.65! can be
used to estimate the roughness exponent for the small-m2
surfaces or curves.

The leading term in MS curvature oflarge roughness cut-
off fractals is given by

^k2&'
3

16

A12H

22H

12r22~22H !

A12r22~12H !

1

l 2 S l

Lmin
D 32H

. ~2.66!

Equation ~2.66! indicates that the MS curvature increases
with a decrease in the roughness exponent for given values
of the other parameters, e.g.,̂ k2&H→1,^k2&H51/2
,^k2&H→0 for Lmin,l. The MS curvature increases with a
increase inr and decreases with a decrease inLmin . The
scaling behavior of the MS curvature between two crossover
scales is given as

^k2&'@3TA12H/16~22H !#~1/L32H!, ~2.67!

whereLmax/L>r1. This equation can be used to estimate the
roughness exponent for a large-m2 surface.
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E. Zero density and persistence

In this section we obtain an exact result for the mean
density of zeros in zero set@41# and its effect on the persis-
tence of a fractal curve. This method has not been used for
estimating fractal dimension.

The mean zero crossing density (^N0&) is given by the
ratio of the MS slope~or second moment! and the MS width
~or zeroth moment! of the surface profilez(x) @30,43#:

^N0&5~1/p!Am2 /m0. ~2.68!

The mean distance between consecutive zeros is approxi-
mately written as

^d0&'1/̂ N0&. ~2.69!

Substituting expressions for the moments of the cutoff
fractal in Eq.~2.68!, we obtain the zero crossing density as

^N0&5
1

p S H

12H D 1/2S 12r22~12H !

12r22H D 1/2 1

Lmin
12HLmax

H . ~2.70!

The Lmin
12HLmax

H factor in Eq.~2.70! can be looked upon as a
generalized geometric mean of the two cutoff scales.
H51/2 corresponds to the ordinary geometric mean, where
equal weight is given to two cutoff scales.H.1/2 corre-
sponds to the case where more weight is given to the upper
cutoff scale. Such a surface has a greater mean distance be-
tween consecutive zeros compared to a Brownian fractal,
which means that the sub-Brownian fractal has a persistent
surface profile. Similarly,H,1/2 corresponds to a case
where the lower cutoff scale has higher weight and such a
surface has a smaller mean distance between consecutive ze-
ros~higher zero density! than a Brownian fractal does, which
means that the super-Brownian fractal has antipersistence in
its surface profile. So the Hurst exponent is a measure of
persistence in the surface profile.

In Eq. ~2.70!, ^N0& decreases for sub-Brownian fractals
but increases for super-Brownian fractals with a increase in
range. This is shown in Fig. 7, where we have plotted the
logarithm of the relative mean zero density, which is the
ratio of the mean zero density for a Brownian cutoff fractal
and mean zero density of an arbitrary cutoff fractal. The
parameter values are the normalization constantT51 and
the wave-number cutoffsKmax5p andKmin5Kmax/r, where
the various values ofr in the curves are 102, 104, 106, and
108. This plot for^N0&1/2/^N0&H is equal to 1 for a Brownian
cutoff fractal and partitions the figure into persistent and an-
tipersistent regions. Sub-Brownian fractal curves or surfaces
fall under the persistence category. Fractals under this cat-
egory try to maintain their trends so they make less frequent
zero crossings. Contrarily, super-Brownian fractals fall under
antipersistence category. Fractals under this category try to
oppose the trend so they make more frequent zero crossings.
Persistence and anti-persistence behavior becomes stronger
with an increase in the range of cutoff scales.

The scaling behavior of̂N0& for a surface with finite
fractality between two crossover lengths is given by

^N0&5@AH/12H/pLmax
H # 1/L12H, ~2.71!

whereLmax/L>max@r0,r1#. Equation~2.71! can be used to
estimate the scaling exponent.

Results for the mean density of extremum points show
that it increases with a decrease in the Hurst exponent of a
cutoff fractal. So surfaces with a lower Hurst exponent look
rougher than those with a higher Hurst exponent. In the limit
Lmin→0 one obtains a space filling surface. The results for
the mean number of the zeros of a higher derivative or, in
general, ther -th derivative of a random surfacez(x) per unit
horizontal length are available from the author.

III. GRANULAR FLOW EXPERIMENTS

The flow of granular materials, such as sand, shows a rich
variety of rather astonishing and poorly understood phenom-
enon. The flow of sand has recently attracted considerable
interest @44–52# and this flow can be looked upon as the
random time series for density@48,51,52# or stress fluctua-
tions @49,50#. These time series are 1/f a noise with a low
frequency white noise@49–53#.

To give a better understanding as an approximately self-
affine time series and to characterize various time scales in-
volved in the problem of flowing sand in a hopper we com-
pare our theoretical results with experiments. We use the
experimental data of Baxteret al. @50# for the flowing sand.
In their work they measured the stochastic time series for the
stress difference between the two spatial locations exerted by
the flowing sand on the wall of a hopper. The power spec-
trum of Ref.@50# is approximated by various forms given in
Sec. II A and an approximate fit for the third power spectra is
shown in the inset of Fig. 8, where various parameters are
T57.193106,H50.565, b50.05, Kmin50.4p, and Kmax
5500p. Solid symbols in Fig. 8 show the SF of the experi-
mentally recorded data of Baxteret al. and curve~V! is the
second-order polynomial fit to logarithmic data. In Fig. 8 we
have plotted various theoretical structure functions, viz.,

FIG. 7. Plot of the mean zero crossing density@Eq. ~2.70!#
^N0&H51/2/^N0&H versus the Hurst exponentH. The parameter val-
ues are the normalization constantT51 and the wave-number cut-
offs Kmax5p andKmin5Kmax/r, where the various values ofr in
the curves are 102, 104, 106, and 108. We see that the Hurst expo-
nentH is the measure of persistence and antipersistence and these
tendencies increase with an increase in the range of cutoff scales.
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D I , D II , D III , andD IV . These theoretical curves for structure
functions fit well with the experimentally measured SF. The
structure functions~I! and ~III ! underestimate experimental
SFs for the large scales, whereas the curves~II ! and~IV ! for
SFs are good for large separation scales. Another important
point to note in Fig. 8 is that near the outer crossover scale,
all theoretical curves overestimate the SF. This is because
power spectra used in our calculations overestimate power
close toKmin due to a sharp transition to white noise spectra.
The oscillation in theoretically calculated SFs originates
from the sharp change in power spectra.

Two crossover time scales in this problem are
Li50.0019 andLo50.4959. Between these time scales the
time series shows an approximate self-affine evolution. For
time scales longer thanLo the system shows long time satu-
ration behavior where the SF is equal to the twice the vari-
ance@see Eq.~2.17!#. Similarly, for time scales smaller than
Li the system approximately evolves in a quadratic way@see
Eq. ~2.15!#.

In Table I we tabulate expected values of various statisti-
cal gross measures for the sand flow experiment of Ref.@50#.
In column I we tabulate gross numerical values of various
statistical measures for power spectra given by Eq.~2.3!, in
column II we tabulate the power spectra given by Eq.~2.4!
and in column III we tabulate the power spectra of Eq.~2.5!.
In this table we show the quantitative trends caused by the
inclusion of contribution of low wave-number non-power-
law spectra and high-wave-number non-power-law spectra
on the gross value of statistical measures.

We use the definitions of all quantities as defined in the

text of this paper, which differ from those used in Ref.@50#
e.g., one-half ofm0 in this paper is equal to MS fluctuation
of Ref. @50# . This discrepancy occurs due to a different
definition used for the Fourier transform of the data.

From Table I one can see that the contribution from the
low-frequency nonfractal crossover is important for the sta-
tistical properties such asm0 and ^N0&. Similarly, the con-
tribution from the high frequency nonfractal crossover is im-
portant for the value ofm2 , m4 , R* , ^k2&, and ^N0&. The
numerical value of the moments grows with the order of the
moment. It is surprising to note that the Schaeffer-Pitman
frequency (f s5U/L*b*'10 Hz) for instability is approxi-
mately equal to the mean zero crossing density (^N0&) of the
time series. HereU andL* (;10 cm) are the characteristic
velocity and length scales for the experiment and
b* (;1022) is a plasticity theory parameter@49#. f s in-
creases with an increase in the flow rate, which implies a
decrease in the Hurst exponentH and/or an increase inr for
^N0& ~see Sec. II E and Fig. 7!. Behringer and Baxter’s ex-
periments@49# show such a decrease in the Hurst exponent
with an increase in the flow rate. This raises an important
question for future investigation to find how the Schaeffer-
Pitman frequency is related to the mean zero crossing density
of the stress difference time series and a more detailed analy-
sis of experimental data in this regard would be interesting.

IV. CONCLUSION

The aim of this paper is to analyze the statistical proper-
ties of corrugated surface fractals and time series with a
band-limited power-law spectrum. These band-limited
power-law spectra generate approximately self-affine scaling
surfaces with analytic properties. Other important conclu-
sions are the following.

~i! We show the existence of approximate scale invariance
properties for the various~roughness! statistical measures be-
tween two fractal crossover scales, viz., the inner crossover
scale (Li) and the outer crossover scale (Lo). This work
unravels the effect of the~spectral! Hurst exponent (H) and
the lower (Lmin) and upper (Lmax) cutoff scales on various
gross roughness features.

~ii ! The height correlation function has two nonfractal
limits, one for small separation and another for large separa-
tion. Similarly, it is shown that the height difference corre-
lation function goes to zero for small separation and for large

FIG. 8. Plot of the power spectrum and the structure function for
a stochastic time series for the stress exerted by the flowing sand on
the wall of a hopper. The inset shows an approximate fit to the
power spectrum of Ref.@50# and the fit parameters areT
57.193106, H50.565, b50.05, Kmin50.4p, and Kmax5500p
@see Eq.~2.5!#. Solid symbols show an experimental structure func-
tion of Ref.@50# and curve~V! is obtained by fitting a second-order
polynomial to the logarithm of these data points. Curves~I!–~IV !
are theoretical structure function@see Eqs.~2.11! and~2.20!–~2.24!#
plots obtained under various approximations for the fitted power
spectra and curves~I!–~IV ! indicate the subscript of SFs obtained in
the text. Vertical bars denotes the approximate scaling region ob-
tained using Eqs.~2.32! and ~2.33!. We see that the experimental
time series is an approximately self-affine fractal.

TABLE I. Various statistical quantities calculated from the ex-
pressions obtained for the three power spectra in this paper. The
parameters areT57.193106, H50.565, b50.05, Kmin50.4p,
andKmax5500p.

Statistical
quantities I II III

m0 3.123104 6.653104 6.653104

m2 3.163107 3.163107 3.323107

m4 2.3731013 2.3731013 2.7931013

R* 4.493103 4.493103 4.593103

^k2& 1.983109 1.983109 2.283109

^N0& 10.1 6.9 7.1
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separation it approaches 2h2 in an oscillatory manner.
Power-law behavior is observed as the leading term in the
fractal limit ~intermediate scales!, which is an indicator of
statistical self-affine scaling.

~iii ! Li is always greater thanLmin and decreases with an
increase inH. Lo is always less thanLmax and is a nonmono-
tonic function ofH. The range of fractality (r f) is always
less than the range of power-law spectra cutoff scales (r). It
has a maximum value forH'0.59. r f is zero for the mar-
ginal (H→1) and extreme (H→0) fractals, which means
that there is no self-affine scaling regime for these fractals
with finite bandwidth spectra.

~iv! The leading contribution to the MS width (h2) comes
from Lmax, though the contribution ofLmin is important for
the super-Brownian surface fractals (H, 1

2!. The importance
of Lmin in h

2 is decided by a ranger0 . We also show that the
MS width is a nonmonotonic function ofH with a minimum
at H0 .

~v! Unlike the MS width, the dominant contribution to the
MS slope (m2) comes fromLmin . The dependence onLmax
contribution is significant for a narrow bandwidth and for
sub-Brownian surface fractals (H. 1

2!. The importance of
Lmax in m2 is decided by a ranger1 . The nonmonotonic
dependence of the MS slope onH is emphasized by showing
a minimum atH1 . The higher moments of power spectra do
not possess any critical behavior.

~vi! The roughness factor (R* ), i.e., dimensionless area or
contour length, shows two regimes, one scaling and another
nonscaling.R* increases with a decrease inLmin and an in-
crease inr. It has a minimum atH1 .

~vii ! The MS curvature increases with an increase inm4
and a decrease inm2 . It shows two scaling regimes.

~viii ! The mean zero crossing density (^N0&) for the cut-
off self-affine fractals is proportional to the generalized geo-
metric mean of the two cutoff scales.^N0& decreases with
the Hurst exponent. The mean distance between consecutive
zeros reveals that the surface has persistent and antipersistent
behavior for sub-Brownian and super-Brownian fractals, re-
spectively. These tendencies increase with the range of frac-
tals.

~ix! For a system close to a Brownian fractal, the finite
range correction for evaluating the Hurst exponent is not
very important. For such cases the use of the ideal fractal
assumption@Eq. ~2.1!# for extractingH is justified. But if we
are dealing with a system withH sufficiently small or large
compared to12, we need to correct for the cutoff scales@use
one of the expressions given by Eqs.~2.26!, ~2.27!, or
~2.28!#.

~x! The suitability of various formulas depends upon the
value of the Hurst exponent of the system. The scaling form
for h2 is suitable for the higher value ofH, i.e.,H*0.2 for
r;33103. The scaling formulas for the slope@Eq. ~2.43!#,
curve length@Eq. ~2.60!#, and curvature@Eq. ~2.67!# are suit-

able for the system with a lower value ofH, i.e.,H&0.8 for
r;33103. Equation~2.71! for the mean zero crossing den-
sity is suitable for the intermediate value ofH, i.e., 0.2&H
&0.8 for r;33103. It is important to note that the scaling
form for the second@Eq. ~2.43!#, and higher@Eq. ~2.49!#
derivatives or curvature@Eq. ~2.65# are suitable for all values
of H. The scaling exponents for the power-law representa-
tion (L2f) of various statistical measures between two
crossover scales are tabulated in Table II.

~xi! We offer a qualitative explanation for the Sayles-
Thomas observation@5# for the distribution of the roughness
exponent with dominant intermediate values.

~xii ! Results offer a better understanding of the experi-
ments involving granular flow in a hopper than previous
works, particularly that of Baxteret al. @49,50#. We show
that the stochastic time series of their experiment can be
looked upon as an approximately self-affine fractal with two
crossover time scales. The Shaeffer-Pitman scale and the
mean zero crossing density of the observed time series may
be related~equal! to each other.

We hope that the results presented here will be helpful to
experimentalists engaging in measuring statistical properties
of random surface fractals and fractal time series in refining
their estimates and will stimulate efforts for precise and fur-
ther measurements. The approximately self-affine fractal is
an important model in the theoretical understanding of vari-
ous interfacial phenomena. Some of these interesting prob-
lems such as diffusion, adsorption of polymers, free energies
of fractal membranes in solution and wetting of fractal inter-
faces are planned to be discussed in the future.
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APPENDIX: USEFUL EXPANSIONS

The small-z expansion for the incomplete gamma func-
tions @36# is

G~a,z!5G~a!2za(
n50

`
~2z!n

~a1n!n!
. ~A1!

The largez-asymptotic expansion for the incomplete gamma
function @36# is

G~a,z!;za21e2zF11
a21

z
1

~a21!~a22!

z2
1••• G . ~A2!

TABLE II. Scaling exponentf for various statistical measures.

Statistical R* ^k2& ^k2&
measure m0 m2 m2r largem2 smallm2 largem2 ^N0&

f 22H 222H 2r22H 12H 222H 32H 12H
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The asymptotic expansion of for the confluent hypergeomet-
ric functionU(a,b,z) for largez @36# is given by

U~a,b,z!5z2a(
n50

~a!n~11a2b!n
n!

~2z!2n. ~A3!

Using the Whittaker function representation of
U(a,b,z) and the small argument@42# expansion for the
Whittaker function, we obtain

U~ 1
2 ,2,z!5

ez/2

z
W 1/2,1/2~z!

5
21

G~ 1
2 !G~2 1

2 !
F (
n50

` G~n1 1
2 !

n! ~11k!!
~z!n@c~n11!

1c~n12!2c~n1 1
2 !2 lnz#2

G~2 1
2 !

z G . ~A4!
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