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Statistics of approximately self-affine fractals: Random corrugated surface and time series
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Rough corrugated surfaces or time series are modeled as one-dimensional, stationary, Gaussian random
processes with power-law power spectra over a limited range of frequencies and analyzed with the techniques
of random processes. Surfaces with power-law spectra with small- and large-scale cutoffs exhibit approximate
self-affine fractals behavior. There are two crossover scales, viz., a lower crossover scale and an upper
crossover scale for nonfractal to fractal and fractal to nonfractal transition, respectively. We find the exact
representation for the various statistical properties, viz., the mean s@u8jewidth, the MS slope, the MS
curvature, the mean curve lengthreg, the mean zero crossing density the correlation function, and the
structure function for these class of curves or corrugated surfaces. The importance of roughness exponent,
upper and lower cutoff scales, and crossover of power-law spectra to non-power-law spectra to statistical
properties of approximately self-affine fractal is emphasized. The scaling behavior of various statistical prop-
erties in the region between the two crossover scales is discussed. We suggest several methods for extracting
fractal dimension. Finally, we apply our results to a granular flow experiment to characterize various time
scales and gross statistical measure in this prob]&h063-651X96)06605-9

PACS numbsgs): 05.40:+j, 02.50.Ey, 61.43.Hv

I. INTRODUCTION spectra are known to give rise to fractal curves and surfaces
with hierarchical structure possessing statistical scaling prop-
Many natural and artificial surfaces and time series areerties[3]. A wide variety of physical systems show power-
disordered and have varying degree of randomness. Contaw behavior in spacéfractal) or time (1f¢ noisg. Some
plexities in these systems arise either from geometric disofexamples are man-made surfa¢g$ fracture the surfaces
der or chemical disorder or both and in some cases it is frorplz], electrodeq13], geographical terraingl,5,14,15, sur-
the dynamics of physical system. Disorder can be either fracyce of the moorj14], the ocean bottorfil5], ocean waves
tal or nonfractal in nature. Fractal disorder is usually underspectra under various sea and atmospheric condifibéls
stood in terms of a self-similar or generally as a Self'aﬂi”eatmospheric turbulendd 7], and stochastic time serigs8—
structure[1-11]. Stafistical self-affine scaling systems can,g; 1« gpectra can also arise from a deterministic chaotic

be viewed as random processes .V\."th power-law power Spef)'hysical system[23,26. Similarly, in biological systems
tra[1-5]. Here we are more specifically concerned with SUsuch as DNA, the spectral density of individual base posi-
faces or time series with power spectra, given as tions has low-frequency power-law noig&7]. An important
<|Z(K)|2>:T|K|—2H—1, (1.1) model for the random fractal power-law power spectra is the
fractional Brownian motior{1,2,§. It is therefore of great
where Z’(K) is the Fourier transform of random curve or importance to understand various statistical properties of
surface profileZ(x), K is the wave number, arillis related ~ SUch power spectra. .
to the strength of the fractal. The angular brackets in Eq. An ideal fractal with a power-law spectrum is not a true
(1.1) designate an ensemble averagiHgin the spectral ex- representation of any physical surface or curve that possesses
ponent is the Hursfor roughnessexponent and its values Sscaling properties only over a finite range of scales. A physi-
are restricted to the interval between 0 and 1. A curve ogally realistic power spectrum possesses both small- and
surface with the Hurst exponent—w can be treated as a large-scale cutoffs. Recently, Yordanov and Nicolaev have

fractal curve or surface wittglobal) fractional dimensional- developed an important method for retrieving the parameters
ity (D) of such cutoff power-law spectra from experimentally re-

corded datd24].
Dy=2—H, 1.2 In this paper we are concerned with the understanding of
the statistical properties of the random Gaussian curves or
where the fractional dimension of the curve or the curvedsurfaces with and without sharp cutoff power-law power
side of the surface lies between 1 and 2. Curves with purgpectra. The main results for the statistics of such approxi-
power-law frequency spectra i.e., “ideal” fractal structures, mately self-affine fractals are reported in Sec. Il. This in-
do not possess any characteristic scale. Power-law powetudes the cutoff power-law spect(8ec. Il A); expressions
for the statistical properties such as the correlation functions
and fractal crossover for approximate power-law spectra
*Mailing address: Colige de France, Physique de la Matie (Sec. |l B; moments of power spectra e.g., mean square
Condense, 11, Place Marcelin-Berthelot, 75231 Paris Cedex 05width and mean square slog8ec. Il Q; probability distri-
France. Electronic address: kant@ext.jussieu.fr bution functions for height and its derivative for the approxi-
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mate power-law spectra, mean curve length, area, and curvpewer-law SF$Eq. (2.1)] have a self-affine scaling property,
ture (Sec. Il D; and zeros and persisten@ec. Il B. In Sec.  viz.,, for a positive reab, ¢(bx) andb"(x) have identical

[l we compare our results with experimental observationsSFs and therefore are statistically indistinguishable.HAs
for the granular flow and identify various time scales of thisincreases oD, decreases the fractal becomes smoother.

problems. Conclusions are reported in Sec. IV. Surfaces or curves witH—1 andH— 0 are called marginal
and extreme fractals3], respectively. For a Brownian fractal
Il. STATISTICAL PROPERTIES OF APPROXIMATELY surfaceH andD are 1/2 and 1.5, respectively. The surfaces
SELF-AFFINE FRACTALS with H<1/2 orDy>1.5 andH >1/2 orD<1.5 are “super-
Brownian” fractals and “sub-Brownian” fractals, respec-

Several decades ago Womersley and Hopki8 pio- tively.
neered the use of random processes to describe rough sur- ;g important to emphasize that there is a profound dif-

faces. This method is now well establishg2B-35. The  forence between the power spectra of nonfractal and fractal
common models for random surface texture or time serie§ycyres. For a nonfractéurface there is a characteristic
are statistically characterized by the power spectra, the Cofsqrejation length or time fixed by the rapidity of the fluc-

relatior_l function, or the structure function of a Ce_nt_emd’tuation whereas for an “ideal” fractalsurface there is no
Gaussian random proce$29-33. These three statistical paracteristic scale at all that can be seen from(Ed).
characteristics are related to each other. Moments of the

power spectral densitj29—-31] are important for obtaining
various statistical properties of the surface, e.g., the mean
square (MS) width, the MS slope, the MS secon@nd Surfaces or time series that exhibit statistical self-
highep derivatives, their probability distribution functions, resemblance over the entire range of scales can be described
the mean area, the mean square value of the curvature, thg the power spectra given by E@..1). However, any real
zero crossing density, and the density of extremum points. surface or a time series is characterized by power-law spectra
In this paper we deal with disorder that arises due toover a few decades in frequencies with a high- and a low-
roughness about a plane surfdf@ a corrugated surfag®r  frequency cutoff23]. The random surface or curve statistics
a line (for time seriey the largest scale of disorder is taken can be approximated by power-law spectra with sharp fre-
to be much less than the linear size of the system. The suguency cutoffs or power-law spectra with low- and high-
face corrugation or disorder is expressed as a continuous afficequency crossover to non-power law spectra.
single-valued random functian= £(x), which represents the The power-law spectra with sharp wave-number cutoff
(surface elevation for all coordinate pointsx]. As men- are given as
tioned above, the power spectrum is sufficient to characterize

A. Power-law spectra with and without sharp cutoffs

such centered, stationary, Gaussian surfaces or curves. The 0, K<Kimin
statistical properties of random corrugated surfaces or time <|z(K)|2)|= TIK| 7277 KpinsK<Knax (2.3
series with nonfractal power spectra are usually well defined 0 K> K

) maxs

guantities, but for “ideal” fractals with power-law spectra
Sumed Valus of the specal exponent, the Fourer ransiordEre Kni a0 K ng, are low- and high-wave-nurber cut

P! 2 P o offs, respectively. These approximate spectra may be suit-
and the moments of|{(K)|*) are divergent and thus the

able to understand statistical properties in the scaling region.

co_rrela|1_t||on funct|cr)]n, varlance,f and I\éI;S derivatives do nOtrpe pand limited power-law spectra in several cases show a
exist. However, the structure functid8P or mean square o4 5| flattening for low wave numbers and a sharp de-

height increment function does exist and follows a self-affin€; o a5e in non-power-law form for the high wave numbers.
scaling relation given by3] Such a power spectrum can be estimated by a function with
— H(x')12) = R2(1-H)y2H 21 a sharp flatteningwhite noise at low wave numbers and a
([E00=L0NH =7 ’ @ sharp cutoff at high wave numbefise., power at high wave
where the angular brackets designate ensemble averagifgmber is very smal] which is given by
andX=|x—x’|. Topothesy {) [3,5] is defined as the hori-

zontal distance between two points on which the SF is equal TKain' " K<Kpin
to 72. Topothesy of an ideal fractal surface is related to the (|z(K)|2>”= TIK| 72171, Kpin<K<Knax (2.9
strength of the power-law spectra by the relation

0, K>K mnax-

2= (T/(7H22" [ (1-H)/T(1/2+H). (2.2 o _ ,
Similarly, an approximate power-law spectrum with sharp

Surface profiles or time series functions that are statistiflattening at low wave numbersvhite noise and a gradual
cally characterized by power-law specfsee Eq(1.1)] and  decrease at high wave numbers is given as

TKr;li%H_l’ K<Kmin

(12K [Zyy =1 TIK[27H, K min=<K =<K nax 2.5
TRz~ X = (K= K/ BKmad,  K>Kiay,
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where 3 is the coefficient of correlation scale. The inset in  (£(x)Z(x’))=(Z(X)£(X"))max—{( L) LX) min

Figs. 5 and 8 show plots of such power spectra with a large- 5 )
wave-number nonfractal spectrum. This power spectrum has =hnaaF2(—H;1—H,1/2,— (X/2L 20)
a sharp high-wave-number fall for smal and reduces to 2 Ca _ 2
Eq. (2.4 for B— 0. Similarly, for largeg [in Eg. (2.5)] the Mimin F2(= Hi 1= H, 1/2,= (X/2L 1in) ),

power spectrum has a long high-frequency tail. These types (2.9
of spectra can be used to estimate several experimental ) o ) o
power spectra Ref$51,50. whereh,;,=(T/2H) Ly, and hio,= (T72mH) Ly

We define a surface or time series with sharp cutoff The structure function or increment correlation function
power-law spectra as a “cutoff” fractal. Apart from the frac- and the correlation function for a corrugated surface or a
tal dimension, a fractal-like surface is characterized by thregurve are related as
characteristic(length or time¢ scales: the largel(,,) and _ N2\ A2 ,
small (L, lateral cutoffs and a scald)(that originates A=([{(x)={(x")])=2n"=2({(x){(x")). (2.10
from the coefficient” of power spectralt~M=T) in Eds.  substituting Eq(2.8) in Eq. (2.10, we obtain
(2.3—(2.5. The minimum wave number(,;,) and maxi-
mum wave numberK,,) are related to cutoff scales as ) T oon iX iX
1L max@nd 1L i, respectively. The range é$patia) scales Aj=2h"-2Re —(—jX)7'T'| —2H, - L
of the system is defined as

(2.1)
P = Lnax/ L min- (2.6)  The real part of Eq(2.11) can be summed in terms of(4,2)

] i L o . generalized hypergeometric function as
It is an important characteristic in determining the relative

importance of lower and upper cutoff scales. The fractal with ~ A|=2h2_[1—F,(—H;1—H,1/2,— (X/2L 120?)]

finite L, andL,;,—0 is called a “finite” fractal and one 5

With L g andL,i,—0 is called an “ideal” fractal. The —2hmi[ 1= 1F2(=H;1=H,1/2,— (X/2L in) H)].
presence of lower and upper cutoff scales in the power spec- (2.12

tra removes the divergences and make it a differentiable sur-

face or a time series of finite variance. In the following sec-To determine the effect of two cutoff scales on the correla-
tion we analyze the correlation and structure function for artion functions we consider the various expansions for the
approximate power-law spectrum and their approximate selfeorrelation function at small, large, and intermediate separa-
affine scaling behavior, crossover scales, and the effect of thigon scales.

nonfractal high-frequency tail region. Behavior of the correlation function famall separation
scalesis obtained by expanding the incompldiefunctions
B. Correlation functions, fractal crossover, and scaling [36] [Eq. (AL1)] in Eq. (2.8) for small X. In this limit, the
exponent correlation function is
In this section we obtain the exact expressions for the 2H () _ ,~2H)
correlation function, difference correlation function, and ef- (LONEX))=
fective scaling exponent for the various power spectra of 2mH
Sec. Il A. Their behavior in various regimes and the effect of 1.2 (=1 lTLﬁq'?n

crossover to low wave-number white noise spectra and high
wave-number non-power-law behavior is analyzed.

The two-point correlation function for a statistically ho-
mogeneous surface is related to the power spectra by an in- X
verse Fourier transform as

& 2(k—H)(2k)!

2k
[1-p720™], (213

I—min

1 (o _ . wherep is the ratio of cutoff length scales and is given by
(E(x)¢(x"))= Zf dKe*X([¢(K)?, (27 Eq.(2.6). In case of surfaces witp=ma}5"", 511~
o the contribution ofp in each individual term is less than 4%

wherej =+/—1 andX=|x—x'|. Substituting Eq(2.3) in Eq. and Eq.(2.13 simplifies to

(2.7) we obtain the correlation function for the cutoff power- 2H g *(mq)krlTp2H ) 2k
law spectrum, i.e., the real paiRe) of the expression <§(X)§(X')>|:ﬂ_ = —m'”( )
2aH  m&L 2(k—H)(2K)! \ L min
, T X iX (2.149
(L)L >>|=Ref;<—JX>2“r(—2H,— I )]
max min For X—0, in Egs.(2.13 and(2.14), we obtain the MS width

(2.8 of the surface.
whereI'(a,x,X;) is the “generalized” incomplete gamma Similarly, we obtain the leading behavior of the SF for
function, which is equal to I'(ax,)—I(ax,) Small separation scales to be
= y(a,x1) — v(a,Xq) [36]. The real part of Eq(2.8) can be TL2H X \2
summed in terms of €l,2) generalized hypergeometric func- A= min ( ) n
tion as 2m(1—H)

(2.19

I—min
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(See the smalk behavior of a representative plot 4f in
Fig. 8)

Similarly, in thelarge separation scales.e., X>L,, and
X>Lmax: the asymptotic expansion of the incompldte
function[36] [see Eq(A2)] in Eq. (2.8 gives

(LO0LON) 1= hia (=11 (2H),

COg X/L pyaxt km/2
g max k7T ), 2.16
(X/L max)

] T=1, B=0.05
where (H),=T'(2H+Kk)/T'(2H) is the Pochammer’s sym- 10° | Konn=Tt,  Ka=2'° 1t
bol for this ratio and"(2H) is the gamma function. Equation S R'?...l o ed id
(2.16 shows that the correlation function goes to zero in an 10 0% 10 102 100 10 10
oscillatory manner for larg.
Substituting Eq(2.16) in Eq. (2.10, one can see that for X (a.u.)

large distances X>L .0 the effect of thelL,,, term is

dominant and the SF shows its second asymptotic regime FIG. 1. Plot of the structure function,(X,H) of Eqg. (2.22

Structure Function (a.u.)

where it approachesh? in an oscillatory manner as versus the spatial incremeMt=|x—x'| for different values of the
Hurst exponenH. The parameter values are the normalization con-
) cog X/L int+ m/2) stant T=1 from Eq. (2.5, the coefficient of correlation scale
Ay=2h*-4Hh? XIL.) +---. (217  B=0.05[see Eq.(2.5], and wave-number cutoff&,== and
min

Kmax=27 defined in Egs.(2.3—-(2.5. We see that the SF in-

(See the largé¢ behavior of a representative plot far in ~ creases for the smaller values of
Fig. 8)

For intermediate separation scalese., the approximate
fractal regimeL ,,,>>X>L,in, an asymptotic expression for
Eq. (2.8 is obtained by using the asymptotic expressions fo
the incompletel” function [36] [see expansions given by

an ideal fractal depends only on the Hurst exponent; how-
ever, for a cutoff fractal it depends on the Hurst exponent as
Iyvell as on two cutoff length scales.

Similarly, the SF for the second power spectriiy.

Egs. (A1) and (A2)] as (2.4)] is obtained as
2(1—H) o A||:A|+A<[, (22@
<§(X)§(X,)>|:_ 2 X2H+hr2n|nk21 (_1)k(2H)k WhereA(/ |S g|ven as
cod X/ Lpint+km/2) 2TLEH [ sin(X/L g
A n y= 1- (2.21)
(X/Lmin) max ™ XL max

©

(—1)H X |2 andA, is given by Eq(2.4). This SF include the contribution
%Zl (k=H)(2K)T | L , (218 of low-wave-number white noise.
m The SF for the third power spectrufig. (2.5)] is

_h2m

where 2~ s defined by Eq(2.2).

Equation(2.11) for the structure function apparently does
not exhibit self-affinity. Theapproximate self-affinitgan be  \\here A, is given by
seen in the asymptotic expansion for a large range of length i
scales, .i.e.l,_maX>X>me. The asymptotic expansion of Eq. 2B8TL2H cog X/ L min) — BXSIN(X/L min)/ L min
(2.11) yields Ay= - 1 1+ (BXIL)2 :
A~ 217X _2h2 |1 2H COS XL it /2) . . 2.29

(X/L in) A,y is the SF for a power spectrum with a sharp lower cutoff

and exponential higher-wave-number behavifby, is de-
fined as

Ay=A+A,+A,, (2.22

—hZ W (HA—H)(X/Lad?- - - (2.19

The structure function for an ideal fractal is given by Eqg. Ay=A+A,. (2.24
(2.2), which is the leading term in Eqg2.19. Equation

(2.19 suggests an approximate self-affine behavior for a surfA,, A,, A, andA,, are plotted in Fig. 8 and are repre-
face or a time series with a cutoff power-law spectra. Thesented by curvefl), (1), (ll1), and(IV), respectively]
oscillations produced by the second term are noticeable only In Fig. 1 we have plotted the SRA(, ; see Eq(2.22] for

for surfaces with relatively Iargbﬁ1in and decreases with an the various values of the Hurst exponent. In this figure we
increase inX. In Eqg. (2.19, 7 is the topothesy and for an have taken the normalization constant 1, the coefficient

ideal fractal, which is given by Eq2.2). The topothesy for of the correlation scal@= 0.05, and the wave-number cut-
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offs K pin=1 andK ,,,= 2*%7. We see that for a given value 1
X, the value of the SF is higher for small roughness expo- -
nent. As we discussed earlier, qualitatively the SF can be
classified in three categories: small-scale domain, approxi- L
mately scaling intermediate-scale domain, and saturation be-
havior of a large-scale domain. These domains can be more
clearly seen in the logarithmic derivative of the SF, which is
discussed below.

In the following discussion we show ttesealing exponent
F(X,p) for the SF is not a global measure for all scales,
viz., the scaling exponent is a function of and cutoff :
scales. The functio’Z(X,p) is obtained by taking the loga- O 121, B=0.05
rithmic derivative of the SF as F K= Kea=2'm

...............................
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o
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~
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H 111 (X)

&
o
T

............................

vl ool ol crod coned v ool o

0.2 -
10° 10° 10 102 10% 107 10° 10

dA

i (2.2 X (a.u.)

FIG. 2. Plot of the scaling exponen#¥, of Eq. (2.28 or the

The formula for the scaling exponent for the sharp cutoffﬁzz%‘ﬁﬁ?ﬂu‘:gtrséjxsp?r?esn;?aﬁ;“g;?n‘zgr|X\/;Cg";;gie

ower-law spectruniEg. (2.3)] is : L
P P MEq. (2.3)] Kmin=1, Kmnax=2'%7, and3=0.05[see Eq(2.5)]. Dotted vertical
lines represent the positions of two cutoff scales and asterisk marks
are the positions of the inner and outer crossover sdakss Egs.
2.32 and 2.3B We see that the there is a systematic deviation in the
value of the.77, from the spectral exponeritepresented by the
horizontal dotted lines

X dA,

%](X.P):Z—AIW-

(2.26

Similarly, the scaling for the second power spectiig.
(2.4)] is obtained as

Xcos{
2BL2HT B

sl
(1+B)sin L

dA dA dA//_ I—min

) | i -

.7/||(X,p): m[d—x'f' d—x/ . (227) dx 'n'( 1+:82X2) Lﬁqin I—min
I-min

This is the exact form for an approximate result obtained by

Talocia[25].
The scaling exponent for the third power spectriiq).
(2.5)] is defined as

X [da, dA, dA,
20, | dX T dX | dX |

T = (2.28

Various derivatives or components in E¢8.26)—(2.28 are
defined below. The derivative &, is expressed as

dA,  4H L 2TLED
X = X LOOE))t —— oI X/L ma)
2H
—~ me'“cqu/me), (2.29

where the correlation functiofZ(x){(x")), is given by Eq.

(2.8). The derivative ofA ., is obtained as

dA ., 2TL2H X 2TLAE2H X
ax  ax °° xS )
(2.30

Lma

Similarly, the derivative foA , is

_ Xsin
4,83TXLmi$1+2H CO{ X )_'8 (Lmin)
BZ)(Z) 2 I-min

L.

L

min

(2.3)

In Fig. 2 we have shown the scale dependence of the
scaling exponentZ), (X, p) [see Eq(2.28] for the same set
of parameters as in Fig. 1. The scaling exponent that is ob-
tained by a logarithmic derivative of the SF is very sensitive
to small oscillations in the SF. In Fig. 1, for the SF, there is
no perceptible oscillation for smaX-behavior, but these os-
cillations are seen very clearly in the&), (X,p) plot. At very
small scale(i.e., X<Lmin), Z1(X,p) goes to unity and as
X increasedi.e., X>L ) it approaches an approximately
constant value close to the spectral exportérit an oscil-
latory manner. Similarly, forX>L ., #Zui(X,p) goes to
zero in an oscillatory manner. Féi=0.5 or close to it,
fairly accurate self-affinity is observed between the two
crossover scales. This is not observedHoclose to 1 and O
(for a finite range of scajeThere is a systematic deviation in
the value of the scaling exponent, viz., the scaling exponent
is underestimated and overestimated for the spectral expo-
nentH close to 1 and 0, respectively. The dotted vertical
lines indicate the position of lower and upper scale cutoffs.
The asterisks in Fig. 2 mark the positions of the inner and
outer crossover scales, which are defined below.
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The crossover scalewithin which the surface shows ap- >
proximate self-affinity can be roughly estimated by the lim- B
iting behavior. Thanner crossover scalélL;) is obtained by 1.8t
equating the leading term in Eq&.15 and (2.19. L; is -
given by §1 .0
Li~XiLmin: b1)1'4
_ 1 1/(2—2H 1.2
xi=2[ VAT (2—H)/2HT (3 +H)]M2=2  (2.32 —
The inner crossover scale is a monotonically decreasing 1
function of H. It is always greater than the lower cutoff 0.8
length scale. The inner crossover scale is large for a small
roughness exponent and decreases with an increase in the 0.6 I R R
Hurst exponent, e.gl,;—~ for H—0, Li= 7L, for H= 0 02 04 06 08 1
3, andL;—e¥%e "L ,~2.54 1, for H—1, wherey is a H
Euler constant.
The outer crossover scalélL ;) is obtained by equating
the leading term in Eqg2.17) and(2.19. L, is given by FIG. 3. Plot of loggl/y versus the Hurst exponemt. This
shows the dependence of the difference in the decades of the range
Lo~ XoL max: of cutoff scales and the range of fractality on the Hurst exponent

[see Eq(2.34)]. The difference diverges a$—0 orH—1 and is
Yo=2[T(1/2+ H)/\/;F(l—H)]”ZH. (2.33 minimum aroundH =0.6.

The outer crossover scalé ) is not a monotonic function Figures 4a) and 4b) explore the scaling exponent depen-
of the Hurst exponent. It has a maximumH#=0.38 and is  dence on the range of cutoff scalgg ( The value of various
approximately equal to 0.65,,.. The outer crossover scale parameters are the same as in Fig. 1. The scaling exponent
for H—0 is given byL,—e "L,,~0.50_ ., for H=1/2  approaches a stable fixed value near the geometric mean po-

by Lo= 2/7 L ,5¢~0.64_,ax; @nd forH—1 by L,—0. sition of two crossover lengths vizX,,= yL;L,. These fig-
The ratio of the outer and inner crossover scales is theires show the systematic deviation in scaling exponent,
range (ps) of fractality. ps is proportional top, TN Xm,p) i.e., for H>0.6 we have7Z(X,,p)<H and for
H<0.6 it follows the 7Z(X,,,p)>H. For systems with a
Pt=XP- broad range of scales we have an approximate identity

ZZn=~H, which is valid only for the intermediate values of
The proportionality constany=yxo/x; in the preceding H e, for p>10° it is applicable for 0.4H=<0.6. For
equation Is given as these values off one can ignore finite scale corrections i.e.,
Eqg. (2.1) can be used to estimate the roughness exponent in

1/2H 1/2(1—H
[ T(H+ 7) 2HT(3+H) | " the scaling region. These figures also show a very slow con-
X= \/;F(l— H) \/;I“(Z— H) (2.34 vergence of . 7(X,p) towards the expected values of

T (Xm,p)=0 and 1 forH=0 and 1, respectively. This is
Figure 3 shows the plot of logarithm of &/ which is a also observed in the numerical calculation of Osborne and

measure of difference in decades of the range of cutoff scaldgrovenzalg19] and Higuchi[20]. _

and the range of fractality, versus the Hurst exportént For an ideal fractal or a random curve with pure power-
This figure suggests that the spectral exporidnaround law spectraEqg. (1.1)], the fractal dimension linearly de-
0.6 yields a broader scaling region than around 0 and 1. Thigénds on the spectral exponent or spectral Hurst exponent,
figure also suggests that the range of fractality is always lesBUt the same is not true for a finite bandwidth power-law

than the range of cutoff length scales and the range of fracsPectra. Figure 2 shows the scale dependence’(X,p).
tality has a maximum foH~0.59 with p;~0.21p. The Similarly, Fig. 4 shows the non-linear dependence of the

range of fractality falls on either side of the maximum and isffactal dimension on the roughness exponéty for a band-

zero for both marginal and extreme fractals. Therefore, Amitéd power law. Random processes with a band-limited

surface or time series with a small or large Hurst exponenPOWer-law spectrum for a given spectral exponét} fas a

should have a largp to show fractality over a finite range. scale-dependent effective scaling exponefitf(X,p)) that
The above discussion also suggests that it is easier to forfi  "elated to the effective fractional dimensionality

a scaling surface with an intermediate valuerbf So one  (Per(X)) between two crossover scales as

expects a frequent occurrence of a fractal surface with an

intgrmediate \?alue of the roughness exponent and a rare oc- Dei(X,p)=2— He(X,p). (2.39

currence of a marginal or an extreme fractal surface. A simifrom Figs. 4a) and 4b) one can see that the effective scal-

lar conclusion can be drawn from Sayles and ThomBsls  ing exponent fop < 10'° approximately follows the inequal-

work, where they plot the histogram for the distribution of ity

the roughness exponent of a variety of natural and artificial

surfaces. 0.04=.77,,<0.96, (2.39
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05 FIG. 5. Plot of the structure functioa;(X,H) of Eq. (2.22
T versus the spatial incremeMt=|x—x’| for different values of the
L coefficient of correlation scales. The parameter valuesTared,
0.4 Lorte H=0.5, Kpn=m, andK ,,,=2'%7 and g is taken as 0.01, 0.1, 0.5,
i 1, 5, 10, and 100. The inset show the power spectra for various
AE Lo values of the correlation coefficiefdee Eq(2.5]. We see that the
& 0.3 1 RS e size of scaling region reduces with an increase in the nonfractal tail
g Co o region of the spectra.
& 02 . T nonfractal region of the power spectrum on the statistical
- EEE TN .. scaling properties of the SF. The inset in Fig. 5 is a plot for
01k XX KKK X x ok x o the power spectra of Eq2.5) for several values of the cor-
LT e relation coefficient 8). The values of the parameters used in
: 1 III|III| 1 II|IIII| 1 IIIII|I| 1 IIIII|II 1 III]ll_Il 1 IIIIIIII*I,Ill*IIIll‘ :I:III: thls flgure areT: 1, H - 05, Kmln:w, and KmaX: 21577 and
0102 10° 10° 10° 10° 107 10° 10° 10'® the values of the correlation coefficient are 0.01, 0.1, 0.5, 1,
5, 10, and 100. In the inset the longest tail spectrum corre-
(b) P sponds toB= 100, the shortest tail spectrum corresponds to

B=0.01, and other values of the spectra fall in between. The

FIG. 4. Plot of the scaling exponent), (X) and its dependence presence of a long tail in the power spectrum, i.e.,
on the range of cutoff scalgs[defined by Eq(2.6)]. The parameter 3= 100,10, or 5, destroys the scaling region of the SF. This
values areT=1, B=0.05 Kyj,=1/m, and Kna=pKmin- (@  means that the band-limited power-law spectrum is not a
H=1,0.9,0.8,0.7,0.6, and 0.8 H=0,0.1,0.2, 0.3, and 0.4. For gyfficient condition to make a scaling surface or time series,

the (spectral Hurst exponentKf) close to 0 and 1,7, has ex- je. one needs to have a short tail high-wave-number non-
tremely slow convergence. It has systematic deviation with opposit%ower_|aw spectra.

trends aroundi =0.6. A recent work of Yordanov and Nickolag24] is closely

. _related to some of the work reported in this section. Yor-
though the §pectr§HI varies between 0 andll. The effective yanov and Nickolae§24] have developed a method for de-
fractional dimension D) of the approximately fractal (omining the spectral parameters of experimentally recorded
curve of finite range varies between 1.04 and 1.96. Similage|f_affine time series and they obtained an expression for the

conclusions are obtained for the fractal dimension of signalgg 5nd the crossover time for the time series with a sharp
with 1/f* by Higuchi[20], Talocia[25], Labateet al.[38],  cytoff power-law spectra. Our results, are consistent with

and Fox[39] using different algorithms. We have tried to {neir results, though their SF differs from oUigq. (2.12]

explain this using the exact result for the scaling exponenpy g factor of 14. This is because thej24] analysis is in

Eq. (2.28 (see Fig. 4 _ _ half-space and uses a different definition for the Fourier
An important measure to quantify the complexity of ayansform. In the following sections we report and analyze

chaotic dynamic system is the Grassberger-Procaeiid  gyxact mathematical formulas for the various other important

correlation dimension, i.e., H. This dimension of the gistical properties of band-limited power-law spectra that

strange attractor counts the effective number of degree Ofre or can be used to understand approximately self-affine
freedom in the dynamical system. Osborne and Provenzalg,qigls.

[19] observed that the numerical estimate of the Grassberger-

Procaccia correlation dimensi$a0] has afinite value even

for a arbitrarily long time series. This finiteness of the cor-

relation dimension is supported by our exact calculation in The presence of a low frequency cutoff tof Lirandom

Fig. 4, where effective correlation dimension isZ;. processes makes it a finite power random processes. Simi-
Figure 5 shows the effect of the large-frequency crossovelarly, the presence of an upper frequency cutoff in the power-

C. Moments of power spectra and significance of cutoff scales
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law power spectrum makes it a differentiable random pro- 6
cess, which opens up the possibility of using derivatives of
random processes to extract the fractal exponent. TihSg 5
derivatives are also important in defining the mean length of
the curve, the MS curvature, the mean zero density, the mean
density of extremum points, etc. A related work in R0]
obtained the exponent in terms of the spectral exponent for
the mth-order forward difference operation to a time series.
In this section we obtain the exact results for the MS fluc-
tuations and arbitrary MS derivatives and analyze their de-
pendence on the scaling exponent and cutoff scales.

The variance and various mean square derivatives of a 1
homogeneous random corrugated surface are related to the
even momentsif,,) of the power spectra. It is important to 0 :
note that the odd moments of the power spectra are zero. 0 0.2 04 0.6 0.8 L

The zeroth momentr(=0) of the power spectrum has an H
important physical significance as it is the measure of the
surface width, i.e., variancehf). This is one of the most FIG. 6. Plot of the MS widthm; [Eq. (2.37] versus Hurst
utilized methods to extract the fractal dimension. The meagxpPonentH for various values of range of cutoff scalgs<10°).
square width of the cutoff fractal can be represented in thd he parameter values are the normalization constant and the

Linp=1 2! 575- Lona=PHinn
p=10%, T=1

8=6

moI (a.u.)

form scale cutoffd. ,,=10°L i, and L i,=1/2'%7, whereé is taken as
6, 5.8, 5.6, 5.4, 5.2, and 5. Asterisks in the figure represent the

| ) 12(1—p~2") [ L pax) 21 positions ofH, [see Eq(2.39]. We show that the minimum of the
my=h*= 2mH ( | ) ) (2.37) MS width becomes sharper and shifts toward the lower value of

H with the increase imp.
wherel and T are related througi =12"") For a suffi-
ciently wide range of frequencies, the leading contribution toare : T=1, L iy=1/2"7, andL ya=pLmin- Asterisks in the
the surface width comes from the upper cutoff length scalefigure represent the positions bf, defined by Eq.(2.39.

The surface width decreases with a decrease in the range ®he monotonic to nonmonotonic transition occurs at
spatial length scales. Fdi—0 (the extreme fractyl Eq.  p~10>23 The MS width less than this range is a monotoni-
(2.37) corresponds to a surface with logarithmic roughnessally decreasing function off. The minimum of the MS
and the mean square surface width is equafliop/7. Fora  width become sharper and shifts towards the lower value of
time series, the MS width is usually defined in such a wayH with an increase ip. It will be interesting to verify this
that it is equal to one-half of the MS width defined by us. monotonic to nonmonotonic transition by numerically simu-
At this point we find the rangep(,) for the surface width lated data.
above which one can ignore the effect of smaller length The second moment of power spectMS slope is an-
scales. This is estimated by takipg‘zH: 1/25, from which  other important surface characteristic. It is needed for obtain-
m ing expressions for mean curve length, MS curvature, mean
po=3"" (238 zero crossing density, and mean extremum density, and for

po increases exponentially as the roughness exponent ggutoff fractals it is found to be

creases. This_ range is infinit(_a fo_r th(_a extreme fractal and 5 G0 \2| 1—p 2ATH (| | 20H)
for the marginal fractal. This implies that inclusion of a |:< = >:—(_) . (2.40
lower cutoff in the power-law spectra is more important for X 2m(1—=H) \Lpin

surfaces or time series with a small roughness exponent. ) . o
For curves or surfaces with=p,, the dimensionless For marginal fractals the MS slope increases logarithmically
width h2_/I? is a nonmonotonic function of the roughness With the range of roughness and is equal to/tn The rms

exponent and has a critical roughness exponehy) ( The slope increases in the power-law form with a decrease in the
dimensionless MS width is minimum &, and this critical lower cutoff scale and also decreases with the decrease in

roughness exponent is obtained in termd gf, and! as p- The rangg, (above which the effect of upper cutoff scale
is not significant for m, is given by
1
- - _ 11—
o= 2 (Ll (239 py=5ULH), (2.4

The magnitude oH, is solely decided by the upper cutoff The rangep; for a Brownian fractal is 25. Similarly, the
scale and the strength of the fractal. The nonmonotonic bep,’'s are 5 and» for extreme and marginal fractal, respec-
havior disappear for the fractals with range less thartively. Hence the inclusion df . in the power-law spectra
JVI/Lmin and they are a monotonically decreasing function ofis more important for surfaces with a higher Hurst exponent.
H. For surfaces withp=p,, the MS slopem, is a non-

In Fig. 6 we plotm{, [see Eq(2.37)] with respect ttH to  monotonic function oH and has a critical roughness expo-
show the range-dependent monotonic to nonmonotonic trament (H;). The MS slope has a minimum Bt and is given
sition in the MS width. The parameters used in these plotdy the relation
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1 probability density and joint probability for the surface el-
lel—m- (2.42 evation, slope, and other higher derivatives are distributed
min according to the normal law. This can be shown by repre-

The magnitude oH; is solely decided by the lower cutoff Senting the surface elevation by a sum of a large number of
scale and the strength of the fractal. The MS derivativeSinusoids with random phases whose coefficients are decided

(m,) shows a scaling property between two crossover lengtRY the power spectral densif§9,29-31. The Gaussian dis-

scales and is given by tribution of surface elevation has been measured for various
surface corrugationg33].
my=[1/2m(1—H)](1/L)?*~H), (2.43 The probability density for the elevation can be obtained

) _ ) ) by substituting an appropriate expression fioy [e.g., EQs.
whereL is an arbitrary length scale and is restricted between 37 (2.45), (2.46] in a Gaussian distribution. The width
Li andL,, andL ya/L=p;. of the Gaussian function increases with an increaske,ig

In general, the &h moment of the power spectra for @ and p. Between the two crossover length scales and for
statistically homogeneous cutoff fractal is well defined and i /| . >p,, the probability density shows scaling behavior
given by and is given by

mb, =[T/27(r —H)][Lpa =L 2] (249 p(£,L)=(HITL?H) Y2exg —2aH2ITL). (250

Equation(2.44) shows that the importance of the upper cut- Equation(2.50 has the scaling property
off scale decreases with an increase in the order of the mo-

ment. The contribution of the upper cutoff length scale is p(&*=b"¢,L*=bL)=b""p(¢,L). (2.5)

insignificant for higher surface moments. In the ideal or fi-

nite fractal limit the second and higher>1) moments di- Another important quantity is the probability density

verge so the surface is nondifferentiable. function of the slopg (&), which is represented as

The presence of lower and upper non-power-law behavior )

in the spectrum modifies the th moment by extra additive p(&)=e 2/ \[2mm,. (2.52

tlze(;”g‘;)r]hg 2th moment of the second power spectrisse The probability density for the slope is obtained by substi-
tuting the appropriate expression for, [e.g., Eqs.(2.40),

mgr=m5r+m2r%_ (2.45 (2.45, and(2.46] in Eqg. (2.52. The probability density for

the cutoff fractal has a scaling property between two cross-
Similarly, the 2th moment for the third power spectrUsee  over scales fot ., /L=p; and is given by

Eq.(2.95]is
29 W P(&F=b" Mg L* =bL)=b""Mp(éy L).
My = My, + My o+ My 5, (2.49 (2.53
wherem,, - andm,, ,, are given by The contour lengthof the fractal curve$41] are used to
obtain the fractal dimension by Higucki8,20 and Osborne
My =TLAG VI(1+2r) (247 and Provenzal§19]. In the following discussion we obtain
and exact results for the contour length and study their scaling

and nonscaling regimes. The contour length of the curved

mzmz(T/q-r),B“zrel’Bern(i';’”F[1+2r,1/,8]. (2.49 side of a corrugated surface or a time series is given by

27172
The mean squangh derivative has a scaling property for = f 1+ ( 940 dx, (2.54
an arbitrary length scale and is given by ) 2
My, =[T/27(r —H)]LL20—H), (2.49  Wherel'y is the average line about which the curved side of

the surface is fluctuating. The probability density function
whereL;<L<L, andL/L=p, (=5YC"H). Therth MS for the slopegEq. (2.52] is used to obtain the exact expres-

derivative ofZ(x) leads to a shift in exponent byr 2 sion for the mean contour length, which is given by
D. Probability densities, curve length, and curvature (I')=~A2m,7/(1/2,2,1]2n,), (2.59

Physical surfaces or time series described by stationaryhere 7/(a,b,z) is a confluent hypergeometric function
random processes and in the absence of long-range corref®g], \/A, is the length of the lind'y, andA, is the (mac-

tions (and with finite varianceare expected to show Gauss- roscopig area of the surface. The mean area and mean con-
ian behavior. Gaussian behavior arises from the central limifoyr length are related through:

theorem[30,37].

For an ideal self-affine surface fractal the variance, slope, (AY=JA(T). (2.56
and higher derivatives do not exist, so the application of the
central limit theorem for these properties is ruled out. For an The roughness factorR¥) is the dimensionless mean
approximately self-affine fractal, however, these quantitiecontour length or mean area of the rough surface and is de-
are finite and the central limit theorem is applicable. Thefined as
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R* :<A>/AOE<F>/\/A—:(l/\/sz)%(llzvzillznZ) <K2>=(m4/\/2m2)7/(%,_ %,1/21]2) (26],)

(257 The MS curvature increases as the fourth moment of the

The R* increases with the second moment of the powempower spectrumr(,), but decreases with an increase in ms
spectra (n,) of the surface. slope. The slope-dependent factor, i.e.,\(Am,) 743%,—3,

To see the effect af, on the roughness factor we expand (1/2m,)], varies between 1 and 0. The smai}asymptotic
Eq. (2.57) for small and largem,. A smallim, asymptotic  expansion for the MS curvatufgee Eq(A3)] is given by
expansion implies that the roughness factor tends to 1 with
decreasingn, . Similarly, the largem, expansion is obtained (k?)~my[1-3m,]. (2.62
using the small argumen®2] expansion for7z [see Eq. ) )
(A4)]in Eq. (2.57). The leading term ilR* goes aa/m_z and For very smallm, the MS curvature is asymptotically equal

higher order terms have both power-law and logarithmic del0 the fourth moment of the power spectrumy). A nu-.
pendences om,. R* for m,>1 (i.e., large roughness sur- merical comparison of E42.62 with an exact expression in
faces is obtained as ' Eq. (2.61) finds that it underestimates E@§2.61) for all

m,. The deviation involved in this approximation for MS
* curvature is less than 5.2% fan,<0.06 and less than
RE~vam,/m. 258 10.79% form,=<0.09 .
The leading dependence of the MS curvature for large

To find the accuracy of this result we compénemerically roughness surfacdge., largemy,) is given by
. 2

it with an exact result for the roughness factor given by Eq.
(2.57. Equation(2.58 underestimates the roughness factor: 2\ o
the deviation involved in this approximation for surfaces (1%y=(3ml8)m, /J2m,. (2.63
with m,;=28 is less than 5% and for surfaces whereThis expression is compargdumerically with Eq. (2.61)
m,=11itis less than 10%. The exact expressions for roughand it is observed that Eq2.63 always overestimates the
ness factor of various power-law spectra can be obtained byl curvature. The deviation in estimating E8.61) by Eq.
substituting various expressionsmf in Sec. IIC.R* fora (2,63 is less than 5% fom,>3 and less than 10% for
large roughness cutoff fractal is estimated as m,=1.5.

The exact expression for the MS curvature can be ob-
tained by substituting the appropriate expressionsripand
m, (see Sec. Il Cin Eq. (2.61). The MS curvature for a
cutoff fractal with verysmall m, is given by
Large roughness surfaces have a roughness factor that in-

1 1— —2(1-H) 1-H

p |
T 1-H

I-min

(2.59

. g . 1—p=22=H) 1 [ | \22-H)
creases witlp andl, and decreases with increasing;,. For (K%)=~ -, - ( _) (2.64
p=p; [see Eq.(2.41)] the effect ofL, is insignificant on 2m(2—H) 1?\ L
R*.

R* for a marginal fractal has a logarithmic dependence inl '€ MS curvature increases with a decreasejg and in-
the rangeR* = /—2|np/77 Similarly, for a cutoff Brownian crease inp. The scaling behavior of MS curvature between
. ' L . two crossover scales is given by
fractal, R* is inversely proportional to/L ., and increases

with an increase irp. R*, for surfaces withp=p,, is a (k¥ =[T/2m(2—H)]LL22"H), (2.65
nonmonotonic function of the roughness exponent and has a
minimum at the critical valuéi=H, [see Eq(2.42]. where L o /L=p; [see Eq.(2.4D)]. Equation(2.65 can be

The roughness factor for a large, has a scaling region, used to estimate the roughness exponent for the small-
i.e., length varies with the measuring ruler sitg (between surfaces or curves.

two crossover length scales. The scaling behavior of the The leading term in MS curvature tfrge roughness cut-

roughness factor can be shown to be off fractals is given by
R*~(\T/mJ1—H) /L1, (2.60 s 3 V1I-H 1-p22H g/ | \3H -
=16 -H i, 2em P\l - (29

whereL ,./L=p; [p, is defined in Eq(2.4D)].

Another important geometrical quantity for characterizingequation (2.66) indicates that the MS curvature increases
the arbitrary geometry of an object is tharvature In con-  jth a decrease in the roughness exponent for given values
trast to the curvature of a pure power-law spectrum, a bancsf the other parameters, e.g.{x?)y_1<(k>n_12
limited power spectrum is a well behaved quantity. In the—(,2) =~ for L;,<I. The MS curvature increases with a
following discussion we obtain exact results for the meanncrease inp and decreases with a decreaselig,. The

square curvature and obtain their two limiting scaling behavscaling behavior of the MS curvature between two crossover
iors. This method is not exploited for estimating the fractalgcales is given as

dimension.

The ensemble average of the curvature is zero, but the MS <K2>~[3T\/1_ H/16(2—H)](1/L3H), (2.67)
curvature is nonzero. The mean square curvature is obtained
by taking two averages over the Gaussian joint probabilitywherel ,,,/L=p;. This equation can be used to estimate the
density. The MS curvature is obtained as roughness exponent for a large- surface.
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E. Zero density and persistence

In this section we obtain an exact result for the mean 10°F 1o Sy
density of zeros in zero s@41] and its effect on the persis- F
tence of a fractal curve. This method has not been used for 10° £
estimating fractal dimension. ; PERSISTENT
The mean zero crossing densityNGg)) is given by the z 10"
ratio of the MS slopdor second momeptand the MS width Al F
(or zeroth momentof the surface profil€(x) [30,43: %% L e s
(No)=(L/m)mp Im. (2.69 100 10
E10% ANTIPERSISTENT
The mean distance between consecutive zeros is approxi- 102 & Ap
mately written as F p=10°
0 e L 1
0

(dg)~1KNo). (2.69 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Substituting expressions for the moments of the cutoff

fractal in Eq.(2.68, we obtain the zero crossing density as FIG. 7. Plot of the mean zero crossing denigg. (2.70]

(NgYr=12/{Ng)n versus the Hurst exponeht. The parameter val-

ues are the normalization constant 1 and the wave-number cut-
offs Knae 7 and Knin=Knax/p, Where the various values @f in

the curves are ¥0 10%, 1¢°, and 1§. We see that the Hurst expo-
The LL-HLH nentH is the measure of persistence and antipersistence and these

min Lmax factor in Eq.(2.70 can be looked upon as a tendencies increase with an increase in the range of cutoff scales
generalized geometric mean of the two cutoff scales. 9 :

H=1/2 corresponds to the ordinary geometric mean, where .
equal weight is given to two cutoff scalesl>1/2 corre- \év;?r;i\%em?ﬁ/é_igﬁr)% Oé’))( gbfeqnliatlon(z'”’) can be used to
sponds to the case where more weight is given to the upper Results for the mean density of extremum points show

cutoff scale. Such a surface has a greater mean dIStancea?ﬁét it increases with a decrease in the Hurst exponent of a

tween consecutive zeros compared to a Brownian fract .
P rg‘tutoff fractal. So surfaces with a lower Hurst exponent look

which means that the sub-Brownian fractal has a persiste : : o
. L rougher than those with a higher Hurst exponent. In the limit

surface profile. Similarly,H<1/2 corresponds to a case . -
L nin—0 one obtains a space filling surface. The results for

where the lower cutoff scale has higher weight and such he mean number of the zeros of a higher derivative or, in

surface has a smaller mean distance between consecutive ze- - .
h general, the-th derivative of a random surfagé€x) per unit

[horizontal length are available from the author.

1/2

1 H 1/2 1_p—2(1—H)
<N0>=;(1_H> ( 2H

T=H H - (2.70

min =max

1-p~ L

ros (higher zero densifythan a Brownian fractal does, whic
means that the super-Brownian fractal has antipersistence

its surface profile. So the Hurst exponent is a measure of
persistence in the surface profile. IIl. GRANULAR FLOW EXPERIMENTS

In Eq. (2.70, (No) decreasgs for sub-quwnia_n fractals_ The flow of granular materials, such as sand, shows a rich
but increases for super-Brownian fractals with a increase i, ety of rather astonishing and poorly understood phenom-
range. This is shown.m Fig. 7, where We.have PIOtt?d & non. The flow of sand has recently attracted considerable
logarithm of the relative mean zero density, which is theinterest[44—52 and this flow can be looked upon as the

ratio of the mean zero density for a Brownian cutoff fractal random time series for densif@#8,51,53 or stress fluctua-
and mean zero density of an arbitrary cutoff fractal. Thetions [49,50. These time series areft/ noise with a low
parameter values are the normalization cons@&natl and frequency white noisf49—53

tEe waye-numlt)er CUto.ffKF:aX:W andei%K%ﬁX/pbﬁwhere To give a better understanding as an approximately self-
the various values g in the curves are 10 10°, 10°, and  4tfine time series and to characterize various time scales in-

10°. This plot for(No) 1//(No)w is equal to 1 for a Brownian yojyeq in the problem of flowing sand in a hopper we com-

cutoff fractal and partitions the figure into persistent and @Nnare our theoretical results with experiments. We use the

tipersistent regions. Sub-Brownian fractal curves or Surfaceéxperimental data of Baxtat al. [50] for the flowing sand.
fall under the persistence category. Fractals under this cajp their work they measured the stochastic time series for the

egory try to maintain their trends so they make less frequendyess gifference between the two spatial locations exerted by
zero crossings. Contrarily, super-Brownian fractals fall undeg,o flowing sand on the wall of a hopper. The power spec-

Persistence and anti-persistence behavior becomes stron@&fown in the inset of Fig. 8, where various parameters are
with an increase in the range of cutoff scales. T=7.19x10f. H=0.565 ,326 05, K,;=0.47, and K,
The scaling behavior ofNo) for a surface with finite  _gq0; solid symbols in Fig. 8 show the SF of the experi-
fractality between two crossover lengths is given by mentally recorded data of Baxtet al. and curve(V) is the
B second-order polynomial fit to logarithmic data. In Fig. 8 we
(Noy=[VH/1=H/aL ] UL, (2.7 have plotted various theoretical structure functions, viz.,
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= TABLE |. Various statistical quantities calculated from the ex-
O T=7.1910% H=0.565, B=0.05 pressions obtained for the three power spectra in this paper. The
108 & Kan=04 T Kogp=500m 0.0V, () parameters ard =7.19x10°F, H=0.565, 8=0.05, K =0.4,
3 = ; and K ;,=500r.
a L (.
Z 10 Statistical
% = guantities [ I 1l
gk 3 mo 312¢10*  6.65¢10°  6.65¢<10°
o £ ot m, 3.16x 107 3.16x107 3.32x 107
3 T § my 2.37x 108 2.37x 108 2.79x 108
E 10 E L R* 4.49¢10° 4.49¢ 103 4.59% 103
@ -/ 10 100 10! 402 10° (x?) 1.98x10° 1.98x10° 2.28x10°
T Cod ool ol ol 1w (No) 101 6.9 7.1
108 107 10" 100 10" 6P
X (s)

text of this paper, which differ from those used in R&0]

FIG. 8. Plot of the power spectrum and the structure function for®-9-» one-half Om_O in_this paper is equal to MS quctL_Jation
a stochastic time series for the stress exerted by the flowing sand & Ref. [50] . This discrepancy occurs due to a different

the wall of a hopper. The inset shows an approximate fit to thed€finition used for the Fourier transform of the data.
power Spectrum of Ref[50] and the fit parameters aréd From Table | one can see that the Contr|but|0n from the

=7.19x10P, H=0.565, 8=0.05, K,;,=0.47, and K,a,=500m7 low-frequency nonfractal crossover is important for the sta-
[see Eq(2.5)]. Solid symbols show an experimental structure func-tistical properties such a®, and(Ny). Similarly, the con-
tion of Ref.[50] and curve(V) is obtained by fitting a second-order tribution from the high frequency nonfractal crossover is im-
polynomial to the logarithm of these data points. Curé@s(1V) portant for the value ofn,, m,, R*, <K2>, and({Ng). The

are theoretical structure functipsee Eqs(2.11) and(2.20—(2.24] numerical value of the moments grows with the order of the
plots obtained under various approximations for the fitted powemoment. It is surprising to note that the Schaeffer-Pitman
spectra and curve$)—(IV) indicate the subscript of SFs obtained in frequency §s=U/L* 8* ~10 Hz) for instability is approxi-
the text. Vertical bars denotes the approximate scaling region obmately equal to the mean zero crossing dengiNgf) of the
tained using Eqgs(2.32 and (2.33. We see that the experimental time series. Heré) and L*(~10 cm) are the characteristic
time series is an approximately self-affine fractal. velocity and length scales for the experiment and
B*(~102) is a plasticity theory parametd#9]. f in-
creases with an increase in the flow rate, which implies a
decrease in the Hurst exponédthtand/or an increase i for

Ay, Ay, Ay, andA)y, . These theoretical curves for structure
functions fit well with the experimentally measured SF. The

structure functiongl) and (lll) underestimate experimental (No) (see Sec. Il E and Fig.)7Behringer and Baxter's ex-

SFs for the large scales, Where?‘s the cu(Me)sand(lV)_ for I;i)eriments[49] show such a decrease in the Hurst exponent
SFs are good for large separation scales. Another important: . . . . .
with an increase in the flow rate. This raises an important

point to note in Fig. 8 is that near the outer crossover scale uestion for future investigation to find how the Schaeffer-

all theoretical curves overestimate the SF. This is becaus%itman frequency is related to the mean zero crossing density

ower spectra used in our calculations overestimate power, . ' , .
P P " . . POWESs the stress difference time series and a more detailed analy-
close toK,, due to a sharp transition to white noise spectra,

The oscillation in theoretically calculated SFs originatesSIS of experimental data in this regard would be interesting.
from the sharp change in power spectra.
Two crossover time scales in this _ problem are IV. CONCLUSION
L;=0.0019 and_,=0.4959. Between these time scales the
time series shows an approximate self-affine evolution. For The aim of this paper is to analyze the statistical proper-
time scales longer thahn, the system shows long time satu- ties of corrugated surface fractals and time series with a
ration behavior where the SF is equal to the twice the variband-limited power-law spectrum. These band-limited
ance[see Eq(2.17]. Similarly, for time scales smaller than power-law spectra generate approximately self-affine scaling
L; the system approximately evolves in a quadratic yeme  surfaces with analytic properties. Other important conclu-
Eq. (2.19]. sions are the following.
In Table | we tabulate expected values of various statisti- (i) We show the existence of approximate scale invariance
cal gross measures for the sand flow experiment of [[8éf. properties for the variougoughnespstatistical measures be-
In column | we tabulate gross numerical values of variousween two fractal crossover scales, viz., the inner crossover
statistical measures for power spectra given by @), in  scale ;) and the outer crossover scaleyf. This work
column Il we tabulate the power spectra given by Ef4) unravels the effect of théspectral Hurst exponenti) and
and in column Ill we tabulate the power spectra of EJ5).  the lower (,,) and upper (.0 cutoff scales on various
In this table we show the quantitative trends caused by thgross roughness features.
inclusion of contribution of low wave-number non-power- (i) The height correlation function has two nonfractal
law spectra and high-wave-number non-power-law spectrimits, one for small separation and another for large separa-
on the gross value of statistical measures. tion. Similarly, it is shown that the height difference corre-
We use the definitions of all quantities as defined in thdation function goes to zero for small separation and for large
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TABLE Il. Scaling exponentp for various statistical measures.

Statistical R* (x?) (k%)
measure mg m, My, large m, smallm, largem, (Np)
¢ -2H  2-2H  2r-2H 1-H 2—-2H 3—-H 1-H

separation it approachesh? in an oscillatory manner.

able for the system with a lower value df, i.e.,H=0.8 for

Power-law behavior is observed as the leading term in the~3x10%. Equation(2.71) for the mean zero crossing den-

fractal limit (intermediate scal¢swhich is an indicator of
statistical self-affine scaling.

(iii) L; is always greater thah,,, and decreases with an
increase irH. L, is always less thah,,,and is a nonmono-
tonic function ofH. The range of fractality 4;) is always
less than the range of power-law spectra cutoff scgégsI{
has a maximum value fad~0.59. p; is zero for the mar-
ginal (H—1) and extreme H—0) fractals, which means

sity is suitable for the intermediate value ldf i.e., 0.2<H
=0.8 for p~3x10°. It is important to note that the scaling
form for the secondEq. (2.43], and higher[Eqg. (2.49]
derivatives or curvaturgEq. (2.65] are suitable for all values
of H. The scaling exponents for the power-law representa-
tion (L~ %) of various statistical measures between two
crossover scales are tabulated in Table II.

(xi) We offer a qualitative explanation for the Sayles-

that there is no self-affine scaling regime for these fractald homas observatiofb] for the distribution of the roughness

with finite bandwidth spectra.

(iv) The leading contribution to the MS widtin{) comes
from L ax, though the contribution of ., is important for
the super-Brownian surface fractald € 3). The importance
of Ly in h? is decided by a range,. We also show that the
MS width is a nonmonotonic function ¢ with a minimum
atHy.

MS slope (n,) comes fromL,;,. The dependence doy,.x

contribution is significant for a narrow bandwidth and for

sub-Brownian surface fractalsH(3). The importance of
Lmax iIN M, is decided by a range,. The nonmonotonic
dependence of the MS slope bihis emphasized by showing

a minimum atH,. The higher moments of power spectra do

not possess any critical behavior.

(vi) The roughness factoR*), i.e., dimensionless area or
contour length, shows two regimes, one scaling and anoth

nonscaling.R* increases with a decreaselip,, and an in-
crease inp. It has a minimum aH; .
(vii) The MS curvature increases with an increasenin
and a decrease im,. It shows two scaling regimes.
(viii) The mean zero crossing densityNg)) for the cut-

exponent with dominant intermediate values.

(xii) Results offer a better understanding of the experi-
ments involving granular flow in a hopper than previous
works, particularly that of Baxteet al. [49,50. We show
that the stochastic time series of their experiment can be
looked upon as an approximately self-affine fractal with two
crossover time scales. The Shaeffer-Pitman scale and the

(v) Unlike the MS width, the dominant contribution to the Méan zero crossing density of the observed time series may

be relatedequa) to each other.

We hope that the results presented here will be helpful to
experimentalists engaging in measuring statistical properties
of random surface fractals and fractal time series in refining
their estimates and will stimulate efforts for precise and fur-
ther measurements. The approximately self-affine fractal is
an important model in the theoretical understanding of vari-
ous interfacial phenomena. Some of these interesting prob-

éems such as diffusion, adsorption of polymers, free energies

of fractal membranes in solution and wetting of fractal inter-
faces are planned to be discussed in the future.
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(ix) For a system close to a Brownian fractal, the finite The smallz expansion for the incomplete gamma func-
range correction for evaluating the Hurst exponent is notions[36] is
very important. For such cases the use of the ideal fractal
assumptionEq. (2.1)] for extractingH is justified. But if we
are dealing with a system witH sufficiently small or large
compared ta}, we need to correct for the cutoff scalesse
one of the expressions given by Eq®.26), (2.27), or
(2.28)]. ) ; ; ;

(x) The suitability of various formulas depends upon the;l::\e:tlir:l)rr?[e?z@??zmptotlc expansion for the incomplete gamma
value of the Hurst exponent of the system. The scaling form
for h? is suitable for the higher value ¢f, i.e.,H=0.2 for
p~3x10°. The scaling formulas for the slog&q. (2.43)], M(az2)~7te ] 1+
curve lengtHEg. (2.60], and curvatur¢Eg. (2.67)] are suit- ' z z

APPENDIX: USEFUL EXPANSIONS

(-2)"

I'(a,z)=T(a)—2%>, i

n=0

(A1)

a—lJr (a—l)(za—Z) T oS
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The asymptotic expansion of for the confluent hypergeomet-

ric function 74(a,b,z) for largez [36] is given by

(a)p(1+a—bh),
n!

%(a,b,z)zz—ango (-2)"". (A3)

Using the Whittaker function representation of
7/(a,b,z) and the small argumen#2] expansion for the

Whittaker function, we obtain
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z/2
2(5,22)= 7 7 12142)
-1 . T'(n+d) ]
“rn L r D
+(n+2)— p(n+ ) —Inz] - 2| (Ad)
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